Ashida et al.
15
Chen, Y., Bedell, H. E., & Frishman, L. J. (1998). The precision of velocity discrimination across spatial
frequency. Percept Psychophys, 60, 1329–1336.
Diener, H. C., Wist, E. R., Dichgans, J., & Brandt, T. (1976). The spatial frequency effect on perceived
velocity. Vision Research, 16, 169–176.
Finney, D. J. (1971). Probit analysis 3rd ed. Cambridge, England: Cambridge University Press.
Geisler, W. S. (1999). Motion streaks provide a spatial code for motion direction. Nature, 400, 65–69.
doi:10.1038/21886
Hammett, S. T., Champion, R. A., Thompson, P. G., & Morland, A. B. (2007). Perceptual distortions
of speed at low luminance: Evidence inconsistent with a Bayesian account of speed encoding. Vision
Research, 47, 564–568. doi:10.1016/j.visres.2006.08.013
Jogan, M., & Stocker, A. A. (2015). Signal integration in human visual speed perception. Journal of
Neuroscience, 35, 9381–9390. doi:10.1523/JNEUROSCI.4801-14.2015
Johnson, R. M., Dahlgren, L., Siegfried, B. D., & Ellis, M. D. (2013). Acaricide, fungicide and drug
interactions in honey bees (Apis mellifera). PLoS One, 8, e54092. doi:10.1371/journal.pone.0054092
Johnston, A., McOwan, P. W., & Buxton, H. (1992). A computational model of the analysis of some
first-order and second-order motion patterns by simple and complex cells. Proceedings of the Royal
Society of London. B: Biological Sciences, 250, 297–306. doi:10.1098/rspb.1992.0162
Lingnau, A., Ashida, H., Wall, M. B., & Smith, A. T. (2009). Speed encoding in human visual cortex
revealed by fMRI adaptation. Journal of Vision, 9, 3.1–3.14. doi:10.1167/9.13.3
Marr, D., & Ullman, S. (1981). Directional selectivity and its use in early visual processing. Proceedings
of the Royal Society of London. B: Biological Sciences, 211, 151–180.
McKee, S. P., Silverman, G. H., & Nakayama, K. (1986). Precise velocity discrimination despite
random variations in temporal frequency and contrast. Vision Research, 26, 609–619.
Morrone, M. C., Burr, D. C., & Vaina, L. M. (1995). Two stages of visual processing for radial and
circular motion. Nature, 376, 507–509. doi:10.1038/376507a0
Nishida, S. (2011). Advancement of motion psychophysics: Review 2001–2010. Journal of Vision, 11,
11. doi:10.1167/11.5.11
Palmer, S. (1999). Vision Science: From Photons to Phenomenology. Cambridge, MA: MIT Press.
Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience Methods,
162, 8–13. doi:10.1016/j.jneumeth.2006.11.017
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into
movies. Spatial Vision, 10, 437–442.
Priebe, N. J., Cassanello, C. R., & Lisberger, S. G. (2003). The neural representation of speed in
macaque area MT/V5. Journal of Neuroscience, 23, 5650–5661.
Priebe, N. J., Lisberger, S. G., & Movshon, J. A. (2006). Tuning for spatiotemporal frequency and
speed in directionally selective neurons of macaque striate cortex. Journal of Neuroscience, 26,
2
941–2950. doi:10.1523/JNEUROSCI.3936-05.2006
Rock, I., Hill, A. L., & Fineman, M. (1968). Speed constancy as a function of size constancy. Perception
Psychophysics, 4, 37–40.
&
Sachs, M. B., Nachmias, J., & Robson, J. G. (1971). Spatial-frequency channels in human vision.
Journal of the Optical Society of America, 61, 1176–1186.
Smith, A. T., & Edgar, G. K. (1990). The influence of spatial frequency on perceived temporal
frequency and perceived speed. Vision Research, 30, 1467–1474.
Smith, A. T., & Edgar, G. K. (1991). Perceived speed and direction of complex gratings and plaids.
Journal of the Optical Society of America A, 8, 1161–1171.
Stone, L. S., & Thompson, P. (1992). Human speed perception is contrast dependent. Vision Research,
32, 1535–1549.
Thompson, P., Brooks, K., & Hammett, S. T. (2006). Speed can go up as well as down at low contrast:
implications for models of motion perception. Vision Research, 46, 782–786. doi:10.1016/
j.visres.2005.08.005