∫ | xn dx = |
|
xn+1 | , n ≠ -1 (1) |
∫ |
|
dx = ln |x| (2) |
∫ | u dv = uv - | ∫ | v du (3) |
∫ |
|
dx = |
|
ln |ax + b| (4) |
∫ |
|
dx = - |
|
(5) |
∫ | (x+a)n dx = |
|
, n≠-1 (6) |
∫ | x(x+a)n dx = |
|
(7) |
∫ |
|
dx = tan-1 | x (8) |
∫ |
|
dx = |
|
tan-1 |
|
(9) |
∫ |
|
dx = |
|
ln|a2+x2| (10) |
∫ |
|
dx = x-a tan-1 |
|
(11) |
∫ |
|
dx = |
|
x2- |
|
a2ln|a2+x2| (12) |
∫ |
|
dx = |
|
tan-1 |
|
(13) |
∫ |
|
dx = |
|
ln |
|
, a ≠ b (14) |
∫ |
|
dx = |
|
+ ln |a+x| (15) |
∫ |
|
dx = |
|
ln|ax2+bx+c| - |
|
tan-1 |
|
(16) |
∫ |
|
dx = |
|
(x-a)3/2 | (17) |
∫ |
|
dx = 2 |
|
(18) |
∫ |
|
dx = -2 |
|
(19) |
∫ | x |
|
dx = |
|
(20) |
∫ |
|
dx = ( |
|
+ |
|
|
(21) |
∫ | (ax+b)3/2 | dx = |
|
(ax+b)5/2 | (22) |
∫ |
|
dx = |
|
(x-+ 2a) |
|
(23) |
∫ |
|
dx = - |
|
-a tan-1 |
|
(24) |
∫ |
|
dx = |
|
-a ln [ |
|
+ |
|
(25) |
∫ | x |
|
dx = |
|
(-2b2 + abx + 3a2 x2) |
|
(26) |
∫ |
|
dx = |
|
[(2ax + b) |
|
-b2 ln | | a |
|
+ |
|
(27) |
∫ |
|
dx =[ |
|
- |
|
+ |
|
|
+ |
|
ln | a |
|
+ |
|
| (28) |
∫ |
|
dx = |
|
x |
|
± |
|
a2 ln | x + |
|
| (29) |
∫ |
|
dx = |
|
x |
|
+ |
|
a2tan-1 |
|
(30) |
∫ | x |
|
dx= |
|
( x2 ± a2) | 3/2 | (31) |
∫ |
|
dx = ln | x + |
|
| (32) |
∫ |
|
dx = sen-1 |
|
(33) |
∫ |
|
dx = |
|
(34) |
∫ |
|
dx = - |
|
(35) |
∫ |
|
dx = |
|
x |
|
-+ |
|
a2 ln | x + |
|
| (36) |
∫ |
|
dx = |
|
|
+ |
|
ln | | 2ax + b + 2 |
|
| (37) |
∫ |
|
dx= |
|
ln | | 2ax+b + 2 |
|
| (38) |
∫ |
|
dx= |
|
|
- |
|
ln | | 2ax+b + 2 |
|
| (39) |
∫ |
|
= |
|
(40) |
∫ | ln ax dx = x ln ax - x (41) |
∫ | x ln x dx = |
|
x2 ln x- |
|
(42) |
∫ | x2 ln x dx = |
|
x3 ln x- |
|
(43) |
∫ | xn ln x dx = xn+1 | ( |
|
- |
|
) | , n ≠ -1 (44) |
∫ |
|
dx = |
|
(ln ax)2 | (45) |
∫ |
|
dx = - |
|
- |
|
(46) |
∫ | ln(ax + b)dx = (x + |
|
) | ln(ax+b)- x, a ≠ 0 (47) |
∫ | ln( x2 + a2)dx = x ln(x2 + a2) +2a tan-1 |
|
- 2x (48) |
∫ | ln( x2 - a2 )dx = x ln(x2 - a2) + a ln |
|
- 2x (49) |
∫ | ln( ax2 + bx + c) | dx = |
|
|
tan-1 |
|
− 2x + ( |
|
+ x | ) ln (ax2+ bx + c) | (50) |
∫ | x ln(ax + b) dx = |
|
- |
|
x2 + |
|
x2- |
|
ln(ax + b) (51) |
∫ | x ln( a2 - b2 x2 | )dx = - |
|
x2 + |
|
(x2 − |
|
) ln(a2 -b2 x2) | (52) |
∫ | (ln x)2 dx = 2x - 2x ln x + x (ln x)2 (53) |
∫ | (ln x)3 dx = −6x + x(ln x)3−3x(ln x)2 + 6x ln x (54) |
∫ | x (ln x)2 dx = |
|
+ |
|
x2 (ln x)2- |
|
x2 ln x (55) |
∫ | x2 (ln x)2 dx = |
|
+ |
|
x3 (ln x)2- |
|
x3 ln x (56) |
∫ | eax | dx = |
|
eax | (57) |
∫ | x ex dx = (x-1) ex (58) |
∫ | x eax | dx = |
|
- |
|
eax | (59) |
∫ | x2 ex | dx = | x2 - 2x + 2 | ex | (60) |
∫ | x2 eax | dx = |
|
- |
|
+ |
|
eax | (61) |
∫ | x3 ex | dx = | x3-3x2 + 6x - 6 | ex | (62) |
∫ | xn eaxdx = |
|
- |
|
∫ | xn-1 | eax | dx (63) |
∫ | xe-ax2dx = | - |
|
e-ax2 | (64) |
∫ | sen ax dx = - |
|
cos ax (65) |
∫ | sen2 ax dx = |
|
- |
|
(66) |
∫ | sen3 ax dx = - |
|
+ |
|
(67) |
∫ | cos ax dx= |
|
sen ax (68) |
∫ | cos2 ax dx = |
|
+ |
|
(69) |
∫ | cos3 ax dx = |
|
+ |
|
(70) |
∫ | cos x sen x dx = |
|
sen2 x + c1 = - |
|
cos2x + c2 = - |
|
cos 2x + c3 (71) |
∫ | cos ax sen bx dx = |
|
- |
|
, a ≠ b (72) |
∫ | sen2 ax cos bx dx = - |
|
+ |
|
- |
|
(73) |
∫ | sen2 x cos x dx = |
|
sen3 x (74) |
∫ | cos2 ax sen bx dx = |
|
- |
|
- |
|
(75) |
∫ | cos2 ax sen ax dx = - |
|
cos3ax (76) |
∫ | sen2 ax cos2 bx dx = |
|
- |
|
- |
|
+ |
|
- |
|
(77) |
∫ | sen2 ax cos2 ax dx = |
|
- |
|
(78) |
∫ | tan ax dx = - |
|
ln cos ax (79) |
∫ | tan2 ax dx = -x + |
|
tan ax (80) |
∫ | tan3 ax dx = |
|
ln cos ax + |
|
sec2 ax (81) |
∫ | sec x dx = ln | sec x + tan x | = 2 tanh-1 | (tan |
|
) | (82) |
∫ | sec2 ax dx = |
|
tan ax (83) |
∫ | sec3 x dx = |
|
sec x tan x + |
|
ln | sec x + tan x | (84) |
∫ | sec x tan x dx = sec x (85) |
∫ | sec2 x tan x dx = |
|
sec2 x (86) |
∫ | secn x tan x dx = |
|
secn x , n ≠ 0 (87) |
∫ | csc x dx = ln | tan |
|
| = ln | csc x - cot x| + C (88) |
∫ | csc2 ax dx = - |
|
cot ax (89) |
∫ | csc3 x dx = - |
|
cot x csc x + |
|
ln | csc x - cot x | (90) |
∫ | cscnx cot x dx = - |
|
cscn x, n ≠ 0 (91) |
∫ | sec x csc x dx = ln |tan x| (92) |
∫ | x cos x dx = cos x + x sin x (93) |
∫ | x cos ax dx = |
|
cos ax + |
|
sen ax (94) |
∫ | x2 cos x dx = 2 xcos x + ( x2 - 2 | ) sen x (95) |
∫ | x2 cos ax dx = |
|
+ |
|
sen ax (96) |
∫ | xn cos x dx = - |
|
(i)n+1 | [ Γ(n+1, -ix) + (-1)n Γ(n+1, ix)] | (97) |
∫ | xn cos ax dx = |
|
(ia)1-n | [ (-1)n Γ(n+1, -iax) -Γ(n+1, ixa)] | (98) |
∫ | x sen x dx = -x cos x + sen x (99) |
∫ | x sen ax dx = - |
|
+ |
|
(100) |
∫ | x2 sen x dx = | 2-x2 | cos x + 2 x sen x (101) |
∫ | x2 sen ax dx = |
|
cos ax + |
|
(102) |
∫ | xn sen x dx = - |
|
(i)n | Γ(n+1, -ix) - (-1)nΓ(n+1, -ix) | (103) |
∫ | x cos2 x dx = |
|
+ |
|
cos 2x + |
|
x sen 2x (104) |
∫ | x sen2 x dx = |
|
- |
|
cos 2x - |
|
x sen 2x (105) |
∫ | x tan2 x dx = - |
|
+ ln cos x + x tan x (106) |
∫ | x sec2 x dx = ln cos x + x tan x (107) |
∫ | ex sen x dx = |
|
ex (sen x - cos x) (108) |
∫ | ebx | sen ax dx = |
|
ebx | (bsen ax - acos ax) (109) |
∫ | ex cos x dx = |
|
ex (sen x + cos x) (111) |
∫ | ebx | cos ax dx = |
|
ebx | ( a sen ax + b cos ax ) (112) |
∫ | x ex sen x dx = |
|
ex (cos x - x cos x + x sen x) (113) |
∫ | x ex cos x dx = |
|
ex (x cos x - sen x + x sen x) (114) |