Respuestas - Capítulo 5
Aquí encontrarás las respuestas a todos los ejercicios del capítulo 5
- f(x)=49+∑n=1∞n2π25[(−1)n−1]cos5nπx+nπ5(−1)n+1sen5nπx
- f(x)=23+∑n=1∞n2π22[1−(−1)n]cos2nπx+nπ2(−1)n+1sen2nπx
- (x)=2π1(eπ−π−1)+∑n=1∞π(1+n2)eπ(−1)n−1cos(nx)+π1(1+n2neπ(−1)n+1+1+n2n+n(−1)n−n1)sen(nx)
- f(x)=3+∑n=1∞n4(−1)nsen(nx)
- f(x)=2π1(eπ−e−π)+∑n=1∞π(1+n2)(−1)n(eπ−e−π)cos(nx)+π(1+n2)(−1)nn(e−π−eπ)sen(nx)
- f(x)=83+∑n=1∞n2π22(cos2nπ−1)cos2nπx+n2π22(sen2nπ+2nπ(−1)n+1)sen2nπx
- f(x)=−41+∑n=1∞nπ−1sen2nπcos2nπx+nπ3(1−cos2nπ)sen2nπx
- f(x)=∑n=1∞nπ−2sen(nπx)
- f(x)=−41+∑n=1∞nπ−1sen2nπcos2nπx+nπ3(1−cos2nπ)sen2nπx
- f(x)=32π2+∑n=1∞n24(−1)n+1cos(nx)
- f(x)=∑n=1∞[n2π2(−1)n+1+n312(−1)n]sen(nx)
- f(x)=π2+∑n=1∞π4n2−14(−1)n+1cos(2nx)
- f(x)=∑n=1∞[n2π4sen2nπ+n2(−1)n+1]sen2nx
- f(x)=43+∑n=1∞n2π24(cos2nπ−1)cos2nπx