Respuestas - Sección 5.2

Aquí encontrarás respuestas de los ejercicios de la sección 5.2

  1. f(x)=12+1πn=1[1(1)n]nsen(nx)\hspace{0.5cm} f(x)=\dfrac{1}{2}+\dfrac{1}{\pi}\sum_{n=1}^{\infty}{\dfrac{\left[1-\left(-1\right)^n\right]}{n}sen(nx)}
  2. f(x)=12+3πn=1[1(1)n]nsen(nx)\hspace{0.5cm} f(x)=\dfrac{1}{2}+\dfrac{3}{\pi}\sum_{n=1}^{\infty}{\dfrac{\left[1-\left(-1\right)^n\right]}{n}sen(nx)}
  3. f(x)=34+n=1(1)n1n2π2cos(nπx)1nπsen(nπx)\hspace{0.5cm} f(x)=\dfrac{3}{4}+\sum_{n=1}^{\infty}{\dfrac{\left(-1\right)^n-1}{n^2\pi^2}cos({n}\pi x)-\dfrac{1}{n\pi}sen(n\pi x)}
  4. f(x)=14+n=1(1)n1n2π2cos(nπx)+(1)n+1nπsen(nπx)\hspace{0.5cm} f(x)=\dfrac{1}{4}+\sum_{n=1}^{\infty}{\dfrac{\left(-1\right)^n-1}{n^2\pi^2}cos({n}\pi x)+\dfrac{\left(-1\right)^{n+1}}{n\pi}sen(n\pi x)}
  5. f(x)=π+n=12n(1)n+1sen(nx)\hspace{0.5cm} f(x)=\pi+\sum_{n=1}^{\infty}{\dfrac{2}{n}\left(-1\right)^{n+1}sen(nx)}