Respuestas - Sección 5.1
Aquí encontrarás la norma de las funciones de los ejercicios 7 a 12
∥
s
e
n
(
2
n
+
1
)
x
∥
=
π
2
\hspace{0.5cm} \left\| sen\left(2n+1\right)x \right\|=\dfrac{\sqrt\pi}{2}
∥
se
n
(
2
n
+
1
)
x
∥
=
2
π
∥
c
o
s
(
2
n
+
1
)
x
∥
=
π
2
\hspace{0.5cm} \left\| cos{\left(2n+1\right)}x \right\|=\dfrac{\sqrt\pi}{2}
∥
cos
(
2
n
+
1
)
x
∥
=
2
π
∥
s
e
n
n
x
∥
=
π
2
\hspace{0.5cm} \left\| sennx \right\|=\dfrac{\sqrt\pi}{2}
∥
se
nn
x
∥
=
2
π
∥
s
e
n
n
π
p
x
∥
=
p
2
\hspace{0.5cm} \left\| sen\dfrac{n\pi}{p}x \right\|=\sqrt{\dfrac{p}{2}}
∥
∥
se
n
p
nπ
x
∥
∥
=
2
p
∥
1
∥
=
p
∥
c
o
s
n
π
p
x
∥
=
p
2
\hspace{0.5cm} \left\| 1 \right\|=\sqrt p \;\;\;\left\| cos{\dfrac{n\pi}{p}}x \right\|=\sqrt{\dfrac{p}{2}}
∥
1
∥
=
p
∥
∥
cos
p
nπ
x
∥
∥
=
2
p
∥
1
∥
=
2
p
∥
c
o
s
n
π
p
x
∥
=
p
∥
s
e
n
n
π
p
x
∥
=
p
\hspace{0.5cm} \left\| 1 \right\|=\sqrt{2p} \;\;\;\left\| cos{\dfrac{n\pi}{p}}x \right\|=\sqrt{p} \;\;\;\left\| sen{\dfrac{n\pi}{p}}x \right\|=\sqrt{p}
∥
1
∥
=
2
p
∥
∥
cos
p
nπ
x
∥
∥
=
p
∥
∥
se
n
p
nπ
x
∥
∥
=
p