Ejercicios de repaso Capítulo 5

Encuentre la serie de Fourier de ff o la serie de senos y de cosenos en el intervalo dado

  1. f(x)={1,5<x<0 1+x,0x<5\hspace{0.5cm} f(x)=\left\{\begin{matrix}1,&-{5}< x<0\\\ 1+x,&0\le x <{5}\\\end{matrix}\right.
  2. f(x)={2+x,2<x<0 2,0x<2\hspace{0.5cm} f(x)=\left\{\begin{matrix}2+x,&-{2}< x<0\\\ 2,&0\le x <{2}\\\end{matrix}\right.
  3. f(x)={0,π<x<0 ex1,0x<π\hspace{0.5cm} f(x)=\left\{\begin{matrix}0,&-{\pi}< x<0\\\ e^x-1,&0\le x <{\pi}\\\end{matrix}\right.
  4. f(x)=32x,                        π<x<π\hspace{0.5cm} f(x)=3-2x,\;\;\;\;\;\;\;\;\;\;\;\; -\pi < x < \pi
  5. f(x)=ex,                        π<x<π\hspace{0.5cm} f(x)=e^x,\;\;\;\;\;\;\;\;\;\;\;\; -\pi < x < \pi
  6. f(x)={0,2<x<0 x,0x<1 1,1x<2\hspace{0.5cm} f(x)=\left\{\begin{matrix}0,&-{2}< x<0\\\ x,&0\le x <{1}\\\ 1,&1\le x <{2}\\\end{matrix}\right.
  7. f(x)={0,2<x<1 2,1x<0 1,0x<1 0,1x<2\hspace{0.5cm} f(x)=\left\{\begin{matrix}0,&-{2}< x<-1\\\ -2,&-1\le x <{0}\\\ 1,&0\le x <{1}\\\ 0,&1\le x <{2}\\\end{matrix}\right.
  8. f(x)={x+1,1<x<0 x1,0x<1\hspace{0.5cm} f(x)=\left\{\begin{matrix}x+1,&-{1}< x<0\\\ x-1,&0\le x <{1}\\\end{matrix}\right.
  9. f(x)={x1,π<x<0 x+1,0x<π\hspace{0.5cm}f(x)=\left\{\begin{matrix}x-1,&-{\pi}< x<0\\\ x+1,&0\le x <{\pi}\\\end{matrix}\right.
  10. f(x)=π2x2,                        π<x<π\hspace{0.5cm}f(x)=\pi^2-x^2,\;\;\;\;\;\;\;\;\;\;\;\; -\pi < x < \pi
  11. f(x)=x3,                        π<x<π\hspace{0.5cm}f(x)=x^3,\;\;\;\;\;\;\;\;\;\;\;\; -\pi < x < \pi
  12. f(x)=cosx,                        π/2<x<π/2\hspace{0.5cm}f(x)=cos x,\;\;\;\;\;\;\;\;\;\;\;\; -\pi/2 < x < \pi/2
  13. f(x)={π,2π<x<π x,πx<π π,πx<2π\hspace{0.5cm} f(x)=\left\{\begin{matrix}-\pi,&-{2\pi}< x<-{\pi}\\\ x,&-{\pi}\le x <{\pi}\\\ \pi,&{\pi}\le x <{2\pi}\\\end{matrix}\right.
  14. f(x)={1,2<x<1 x,1x<0 x,0x<1 1,1x<2\hspace{0.5cm} f(x)=\left\{\begin{matrix}-1,&-{2}< x<-1\\\ -x,&-1\le x <{0}\\\ x,&0\le x <{1}\\\ 1,&1\le x <{2}\\\end{matrix}\right.