Solución

Primero calculamos la masa mm. Necesitamos describir la región entre la gráfica de y=x2y = x^2 y las líneas verticales x=0x = 0 y x=2x = 2:

m=Rdm=Rρ(x,y)dA=x=0x=2y=0y=x2(x+y)dydx=x=0x=2[xy+y22y=0y=x2]dx=x=0x=2[x32]dx=[x44+x510]x=0x=2=365\begin{aligned} m &= \iint_Rdm = \iint_R \rho(x,y)dA = \int_{x=0}^{x=2}\int_{y=0}^{y=x^2} (x+y)dydx = \int_{x=0}^{x=2}\bigg[xy + \frac{y^2}{2}\bigg|_{y=0}^{y=x^2}\bigg]dx\\ &= \int_{x=0}^{x=2}\bigg[\frac{x^3}{2}\bigg]dx = \bigg[\frac{x^4}{4} + \frac{x^5}{10}\bigg]\bigg|_{x=0}^{x=2} = \frac{36}{5} \end{aligned}

Ahora calculamos los momentos MxM_x y MyM_y:

Mx=Ryρ(x,y)dA=x=0x=2y=0y=x2y(x+y)dydx=807M_x = \iint_R y\rho(x, y)dA = \int_{x=0}^{x=2}\int_{y=0}^{y=x^2} y(x+y)dydx = \frac{80}{7} My=Rxρ(x,y)dA=x=0x=2y=0y=x2x(x+y)dydx=17615M_y = \iint_R x\rho(x, y)dA = \int_{x=0}^{x=2}\int_{y=0}^{y=x^2} x(x+y)dydx = \frac{176}{15}

Finalmente, evaluamos el dentro de masa,

xˉ=Mym=Rxρ(x,y)dARρ(x,y)dA=176/1536/5=4427\bar{x} = \frac{M_y}{m} = \frac{\iint_R x\rho(x, y)dA}{\iint_R \rho(x, y)dA} = \frac{176/15}{36/5} = \frac{44}{27} yˉ=Mxm=Ryρ(x,y)dARρ(x,y)dA=80/736/5=10063\bar{y} = \frac{M_x}{m} = \frac{\iint_R y\rho(x, y)dA}{\iint_R \rho(x, y)dA} = \frac{80/7}{36/5} = \frac{100}{63}

Por lo tanto, el centro de masa es (xˉ,yˉ)=(4427,10063)(\bar{x}, \bar{y}) = \big(\frac{44}{27} , \frac{100}{63} \big).