Solución

Esta es una integral impropia porque estamos integrando sobre una región R2R^2 sin límites. En coordenadas polares, todo el plano R2R^2 puede verse como 0θ2π,0r0 \le \theta \le 2\pi, 0 \le r \le \infin. Usando los cambios de variables de coordenadas rectangulares a coordenadas polares, tenemos

R2e10(x2+y2)dxdy=θ=0θ=2πr=0r=e10r2=rdrdθ=θ=0θ=2π(limar=0r=ae10r2rdr)dθ=(θ=0θ=2πdθ)(limar=0r=ae10r2rdr)=2π(limar=0r=ae10r2rdr)=2πlima(120)(e10r20a)=2π(120)lima(e10a21)=π10\begin{aligned} \iint_{R^2}e^{-10\big(x^2+y^2\big)}dxdy &= \int_{\theta=0}^{\theta= 2\pi}\int_{r=0}^{r=\infin}e^{-10r^2}=rdrd\theta = \int_{\theta=0}^{\theta= 2\pi}\bigg(\lim\limits_{a \to \infin}\int_{r=0}^{r=a}e^{-10r^2}rdr\bigg)d\theta\\ &= \bigg(\int_{\theta=0}^{\theta= 2\pi}d\theta\bigg)\bigg(\lim\limits_{a \to \infin}\int_{r=0}^{r=a}e^{-10r^2}rdr\bigg)\\ &= 2\pi\bigg(\lim\limits_{a \to \infin}\int_{r=0}^{r=a}e^{-10r^2}rdr\bigg)\\ &= 2\pi\lim\limits_{a \to \infin}\bigg(-\frac{1}{20}\bigg)\bigg(e^{-10r^2}\bigg|_0^a\bigg)\\ &= 2\pi\bigg(-\frac{1}{20}\bigg)\lim\limits_{a \to \infin}\bigg(e^{-10a^2}-1\bigg)\\ &= \frac{\pi}{10} \end{aligned}