Solución

Para implementar la regla de la cadena para dos variables, necesitamos seis derivadas parciales: zx\frac{\partial z}{\partial x}, zy\frac{\partial z}{\partial y}, xx\frac{\partial x}{\partial x}, xv\frac{\partial x}{\partial v}, yu\frac{\partial y}{\partial u} y yv\frac{\partial y}{\partial v}:

zx=6x2y\frac{\partial z}{\partial x} = 6x-2yzy=2x+2y\frac{\partial z}{\partial y} = -2x+2y
xu=3\frac{\partial x}{\partial u} = 3xv=2\frac{\partial x}{\partial v} = 2
yu=4\frac{\partial y}{\partial u} = 4yv=1\frac{\partial y}{\partial v} = -1

Para encontrar zu\frac{\partial z}{\partial u}, usamos la ecuación 4.31:

zu=zxxu+zyyu=3(6x2y)+4(2x+2y)=10x+2y\begin{aligned} \frac{\partial z}{\partial u} &= \frac{\partial z}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial u}\\ &= 3(6x − 2y) + 4(−2x + 2y)\\ &= 10x+2y \end{aligned}

A continuación, sustituimos x(u,v)=3u+2vx (u, v) = 3u + 2v e y(u,v)=4uvy (u, v) = 4u - v:

zu=10x+2y=10(3u+2v)+2(4uv)=38u+18v\begin{aligned} \frac{\partial z}{\partial u} &= 10x+2y\\ &= 10(3u + 2v) + 2(4u − v)\\ &= 38u + 18v \end{aligned}

Para encontrar zv\frac{\partial z}{\partial v}, usamos la ecuación 4.32:

zv=zxxv+zyyv=2(6x2y)+(1)(2x+2y)=14x6y\begin{aligned} \frac{\partial z}{\partial v} &= \frac{\partial z}{\partial x}\frac{\partial x}{\partial v} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial v}\\ &= 2(6x − 2y) + (−1)(−2x + 2y)\\ &= 14x-6y \end{aligned}

Luego sustituimos x(u,v)=3u+2vx (u, v) = 3u + 2v e y(u,v)=4uvy (u, v) = 4u - v:

zv=14x6y=14(3u+2v)6(4uv)=18u+34v\begin{aligned} \frac{\partial z}{\partial v} &= 14x-6y\\ &= 14(3u + 2v) − 6(4u − v)\\ &= 18u + 34v \end{aligned}