a. T(u,v)=(2u+v,3v)T (u, v) = (2u + v, 3v)T(u,v)=(2u+v,3v) b. El área de RRR es A(R)=∫03∫y/3(6−y)/3dxdy=∫01∫01−u∣∂(x,y)∂(u,v)∣dvdy=∫01∫01−u6dvdu=3\displaystyle A(R) = \int_0^3\int_{y/3}^{(6-y)/3} dxdy = \int_0^1\int_0^{1-u}\bigg|\frac{\partial(x,y)}{\partial(u,v)}\bigg|dvdy = \int_0^1\int_0^{1-u} 6dvdu = 3A(R)=∫03∫y/3(6−y)/3dxdy=∫01∫01−u∣∣∂(u,v)∂(x,y)∣∣dvdy=∫01∫01−u6dvdu=3