Solución

a. T(u,v)=(2u+v,3v)T (u, v) = (2u + v, 3v)

b. El área de RR es
A(R)=03y/3(6y)/3dxdy=0101u(x,y)(u,v)dvdy=0101u6dvdu=3\displaystyle A(R) = \int_0^3\int_{y/3}^{(6-y)/3} dxdy = \int_0^1\int_0^{1-u}\bigg|\frac{\partial(x,y)}{\partial(u,v)}\bigg|dvdy = \int_0^1\int_0^{1-u} 6dvdu = 3