a. y=rcosθ,z=rsenθ,x=z\text{a.}\;\;\;y = rcos\theta, z = rsen\theta, x = za.y=rcosθ,z=rsenθ,x=z E={(r,θ,z)∣1≤r≤3,0≤θ≤2π,0≤z≤1−r2},f(r,θ,z)=zE = \lbrace (r, \theta, z)|1 \le r \le 3, 0 \le \theta \le 2\pi, 0 \le z \le 1 - r^2\rbrace, f(r, \theta, z) = zE={(r,θ,z)∣1≤r≤3,0≤θ≤2π,0≤z≤1−r2},f(r,θ,z)=z b. ∫13∫02π∫01−r2f(r,θ,z)zrdzdθdr=356π3\text{b.}\;\;\;\int_1^3\int_0^{2\pi}\int_0^{1-r^2} f(r, \theta, z)zrdzd\theta dr = \frac{356\pi}{3}b.∫13∫02π∫01−r2f(r,θ,z)zrdzdθdr=3356π