a. E={(r,θ,z)∣0≤r≤3,0≤θ≤π/2,0≤z≤rcosθ+3}\text{a.}\;\;\;E = \bigg\lbrace (r, \theta, z)|0 \le r \le 3, 0 \le \theta \le \pi/2, 0 \le z \le rcos\theta + 3\bigg\rbracea.E={(r,θ,z)∣0≤r≤3,0≤θ≤π/2,0≤z≤rcosθ+3} f(r,θ,z)=1rcosθ+3f(r, \theta, z) = \frac{1}{rcos\theta + 3}f(r,θ,z)=rcosθ+31 b. ∫03∫0π/2∫0r(cosθ+3)f(r,θ,z)dzdθdr=9π4\text{b.}\;\;\;\int_0^3\int_0^{\pi/2}\int_0^{r(cos\theta + 3)} f(r, \theta, z)dzd\theta dr = \frac{9\pi}{4}b.∫03∫0π/2∫0r(cosθ+3)f(r,θ,z)dzdθdr=49π