Encontrando el área bajo una curva paramétrica

A=aby(t)x(t)dtA = \int\limits_a^b {y\left( t \right)\,} x'\left( t \right)dt A=02π(1cost)(1cost)dtA = \int\limits_0^{2\pi } {\left( {1 - \cos t} \right)\,} \left( {1 - \cos t} \right)dt A=02π(12cost+1+cos2t2)dtA = \int\limits_0^{2\pi } {\left( {1 - 2\cos t + \frac{{1 + \cos 2t}}{2}} \right)\,} dt A=02π(322cost+cos2t2)dtA = \int\limits_0^{2\pi } {\left( {\frac{3}{2} - 2\cos t + \frac{{\cos 2t}}{2}} \right)\,} dt A=32t2sent+sen2t4t=02π=3πA = \left. {\frac{3}{2}t - 2sent + \frac{{sen2t}}{4}} \right|_{t = 0}^{2\pi } = \boxed{3\pi }