Solución

Primero, calculamos utt,uxxu_{tt}, u_{xx} y uyyu_{yy}:

utt=t[ut]=t[5sen(3πx)sen(4πy)(10πsen(10πt))]=t[50πsen(3πx)sen(4πy)sen(10πt)]=500π2sen(3πx)sen(4πy)cos(10πt)\begin{aligned} u_{tt} &= \frac{\partial }{\partial t}\bigg[\frac{\partial u}{\partial t} \bigg]\\ &= \frac{\partial }{\partial t}[5sen(3\pi x)sen(4\pi y)(−10\pi sen(10\pi t))]\\ &= \frac{\partial }{\partial t}[−50\pi sen(3\pi x)sen(4\pi y)sen(10\pi t)]\\ &= −500\pi^2 sen(3\pi x)sen(4\pi y)cos(10\pi t) \end{aligned} uxx=x[ux]=x[15πcos(3πx)sen(4πy)cos(10πt)]=45π2sen(3πx)sen(4πy)cos(10πt)\begin{aligned} u_{xx} &= \frac{\partial }{\partial x}\bigg[\frac{\partial u}{\partial x} \bigg]\\ &= \frac{\partial }{\partial x}[15\pi cos(3\pi x)sen(4\pi y)cos(10\pi t)]\\ &= −45\pi^2sen(3\pi x)sen(4\pi y)cos(10\pi t) \end{aligned} uyy=y[uy]=y[5sen(3πx)(4πcos(4πy))cos(10πt)]=y[20πsen(3πx)cos(4πy)cos(10πt)]=80π2sen(3πx)sen(4πy)cos(10πt)\begin{aligned} u_{yy} &= \frac{\partial }{\partial y}\bigg[\frac{\partial u}{\partial y} \bigg]\\ &= \frac{\partial }{\partial y} [5sen(3\pi x)(4\pi cos(4\pi y))cos(10\pi t)]\\ &= \frac{\partial }{\partial y} [20\pi sen(3\pi x)cos(4\pi y)cos(10\pi t)]\\ &= −80\pi^2sen(3\pi x)sen(4\pi y)cos(10\pi t) \end{aligned}

A continuación, sustituimos cada uno de estos en el lado derecho de la Ecuación 4.20 y simplificamos:

4(uxx+uyy)=4(45π2sen(3πx)sen(4πy)cos(10πt)4(u_{xx}+u_{yy}) = 4(−45\pi^2 sen(3\pi x)sen(4\pi y)cos(10\pi t) 80π2sen(3πx)sen(4πy)cos(10πt))−80\pi^2sen(3\pi x)sen(4\pi y)cos(10\pi t)) =4(125π2sen(3πx)sen(4πy)cos(10πt))= 4(−125\pi^2 sen(3\pi x)sen(4\pi y)cos(10\pi t)) =500π2sen(3πx)sen(4πy)cos(10πt)=utt= −500\pi^2sen(3\pi x)sen(4\pi y)cos(10\pi t)= u_{tt}

Esto verifica la solución.