Solución

Para calcular 2fx2\frac{\partial^2 f}{\partial x^2} y 2fyx\frac{\partial^2 f}{\partial y\partial x}, primero calculamos fx\frac{\partial f}{\partial x}:

fx=e3y+2cos(2x5y)\frac{\partial f}{\partial x} = e^{−3y}+2cos(2x−5y)

Para calcular 2fx2\frac{\partial^2 f}{\partial x^2}, diferencia fx\frac{\partial f}{\partial x} con respecto a xx:

2fx2=x[fx]=x[e3y+2cos(2x5y)]=4sen(2x5y)\begin{aligned} \frac{\partial^2 f}{\partial x^2} &= \frac{\partial}{\partial x}\bigg[\frac{\partial f}{\partial x} \bigg]\\ &= \frac{\partial}{\partial x}\big[e^{−3y}+2cos(2x−5y) \big]\\ &= −4sen(2x−5y) \end{aligned}

Para calcular 2fyx\frac{\partial^2 f}{\partial y\partial x}, diferencia fx\frac{\partial f}{\partial x} con respecto a yy:

2fyx=y[fx]=y[e3y+2cos(2x5y)]=3e3y+10sen(2x5y)\begin{aligned} \frac{\partial^2 f}{\partial y\partial x} &= \frac{\partial}{\partial y}\bigg[\frac{\partial f}{\partial x}\bigg]\\ &= \frac{\partial}{\partial y}\big[e^{−3y}+2cos(2x−5y) \big]\\ &= −3e^{−3y}+10sen(2x−5y) \end{aligned}

Para calcular 2fxy\frac{\partial^2 f}{\partial x\partial y} y 2fy2\frac{\partial^2 f}{\partial y^2}, primero calculamos fy\frac{\partial f}{\partial y}:

fy=3xe3y5cos(2x5y)\frac{\partial f}{\partial y} = −3xe^{−3y}−5cos(2x−5y)

Para calcular 2fxy\frac{\partial^2 f}{\partial x\partial y}, diferencia fy\frac{\partial f}{\partial y} con respecto a xx:

2fxy=x[fy]=x[3xe3y5cos(2x5y)]=3e3y10sen(2x5y)\begin{aligned} \frac{\partial^2 f}{\partial x\partial y} &= \frac{\partial}{\partial x}\bigg[\frac{\partial f}{\partial y} \bigg]\\ &= \frac{\partial}{\partial x}\big[−3xe^{−3y}−5cos(2x−5y) \big]\\ &= −3e^{−3y}-10sen(2x−5y) \end{aligned}

Para calcular 2fy2\frac{\partial^2 f}{\partial y^2}, diferencia fy\frac{\partial f}{\partial y} con respecto a yy:

2fy2=y[fy]=y[3xe3y5cos(2x5y)]=9xe3y+25sen(2x5y)\begin{aligned} \frac{\partial^2 f}{\partial y^2} &= \frac{\partial}{\partial y}\bigg[\frac{\partial f}{\partial y} \bigg]\\ &= \frac{\partial}{\partial y}\big[−3xe^{−3y}−5cos(2x−5y)\big]\\ &= 9xe^{−3y}+25sen(2x−5y) \end{aligned}