Solución
En cada caso, trata todas las variables como constantes, excepto aquella cuya derivada parcial estás calculando.
Apartado a
∂x∂f=∂x∂[x−3yzx2y−4xz+y2]=(x−3yz)2∂x∂(x2y−4xz+y2)(x−3yz)−(x2y−4xz+y2)∂x∂(x−3yz)=(x−3yz)2(2xy−4z)(x−3yz)−(x2y−4xz+y2)(1)=(x−3yz)22x2y−6xy2z−4xz+12yz2−x2y+4xz−y2=(x−3yz)2x2y−6xy2z−4xz+12yz2+4xz−y2
∂y∂f=∂y∂[x−3yzx2y−4xz+y2]=(x−3yz)2∂y∂(x2y−4xz+y2)(x−3yz)−(x2y−4xz+y2)∂y∂(x−3yz)=(x−3yz)2(x2+2y)(x−3yz)−(x2y−4xz+y2)(−3z)=(x−3yz)2x3−3x2yz+2xy−6y2z+3x2yz−12xz2+3y2z=(x−3yz)2x3+2xy−3y2z−12xz2
∂z∂f=∂z∂[x−3yzx2y−4xz+y2]=(x−3yz)2∂z∂(x2y−4xz+y2)(x−3yz)−(x2y−4xz+y2)∂z∂(x−3yz)=(x−3yz)2(−4x)(x−3yz)−(x2y−4xz+y2)(−3y)=(x−3yz)2−4x2+12xyz+3x2y2−12xyz+3y3=(x−3yz)2−4x2+3x2y2+3y3
Apartado b
∂x∂f=∂x∂[sen(x2y−z)+cos(x2−yz)]=cos(x2y−z)∂x∂(x2y−z)−sen(x2−yz)∂x∂(x2−yz)=2xycos(x2y−z)−2xsen(x2−yz)
∂y∂f=∂y∂[sen(x2y−z)+cos(x2−yz)]=(cos(x2y−z)∂y∂(x2y−z)−sen(x2−yz)∂y∂(x2−yz)=x2cos(x2y−z)+zsen(x2−yz)
∂z∂f=∂z∂[sen(x2y−z)+cos(x2−yz)]=cos(x2y−z)∂z∂(x2y−z)−sen(x2−yz)∂z∂(x2−yz)=−cos(x2y−z)+ysen(x2−yz)