Solución

Apartado a

Sustituye los componentes de v\bold{v} y u\bold{u} en la fórmula 2.6 para la proyección:

proyuv=uvu(1uu)=uvu2u=1,4,33,5,11,4,321,4,3=3+20+3(1)2+42+321,4,3=20261,4,3=(1013,4013,3013)\begin{aligned} proy_u\bold{v} &= \frac{\bold{u}\cdot\bold{v}}{\|\bold{u}\|}\bigg(\frac{1}{\|\bold{u}\|}u\bigg) = \frac{\bold{u}\cdot\bold{v}}{\|\bold{u}\|^2}u\\ &= \frac{\lang −1,4,3\rang\cdot\lang 3,5,1\rang}{\|\lang −1,4,3\rang\|^2}\lang −1,4,3\rang\\ &= \frac{−3+20+3}{(−1)^2+4^2+3^2}\lang −1,4,3\rang\\ &= \frac{20}{26}\lang −1,4,3\rang\\ &= \bigg(-\frac{10}{13}, \frac{40}{13}, \frac{30}{13}\bigg) \end{aligned}

Apartado b

Para encontrar la proyección bidimensional, simplemente adapta la fórmula al caso bidimensional:

proyuv=uvu(1uu)=uvu2u=(i+6j)(3i2j)i+6j2(i+6j)=1(3)+6(2)12+62(i+6j)=937(i+6j)=937i5437i\begin{aligned} proy_u\bold{v} &= \frac{\bold{u}\cdot\bold{v}}{\|\bold{u}\|}\bigg(\frac{1}{\|\bold{u}\|}u\bigg) = \frac{\bold{u}\cdot\bold{v}}{\|\bold{u}\|^2}u\\ &= \frac{(\bold{i}+6\bold{j})\cdot(3\bold{i}−2\bold{j})}{\|\bold{i}+6\bold{j}\|^2}(\bold{i}+6\bold{j})\\ &= \frac{1(3)+6(−2)}{12+62}(\bold{i}+6\bold{j})\\ &=-\frac{9}{37}(\bold{i}+6\bold{j})\\ &= -\frac{9}{37}\bold{i}-\frac{54}{37}\bold{i} \end{aligned}