a. x=1+t,y=−2+2t,z=3+3t,t∈Rx=1+t,y=−2+2t,z=3+3t, t\isin\Realsx=1+t,y=−2+2t,z=3+3t,t∈R b. x−11=y+22=z−33\frac{x−1}{1}=\frac{y+2}{2}=\frac{z−3}{3}1x−1=2y+2=3z−3 c. (0,−4,0)(0,−4,0)(0,−4,0)