Solución
d
y
d
x
=
f
′
(
θ
)
s
e
n
θ
+
f
(
θ
)
c
o
s
θ
f
′
(
θ
)
c
o
s
θ
−
f
(
θ
)
s
e
n
θ
\frac{dy}{dx} = \frac{f′(\theta)sen\theta + f(\theta)cos\theta}{f′(\theta)cos\theta − f(\theta)sen\theta}
d
x
d
y
=
f
′
(
θ
)
cos
θ
−
f
(
θ
)
se
n
θ
f
′
(
θ
)
se
n
θ
+
f
(
θ
)
cos
θ