Pág.8 - 9-nov-09 - Segunda Edición - Descargue gratuitamente esta Guía: http://www.eduteka.org/GuiaAlgoritmos.php vista diferentes, busque alternativas); avive (promueva el uso de la fantasía y del humor); libere (use la discontinuidad y escape de ideas preestablecidas); y contrarreste la rigidez (vea las cosas desde diferentes ángulos y evite dogmatismos). Este es un método adecuado cuando el problema que se desea resolver no requiere información adicional, sino un reordenamiento de la información disponible; cuando hay ausencia del problema y es necesario apercibirse de que hay un problema; o cuando se debe reconocer la posibilidad de perfeccionamiento y redefinir esa posibilidad como un problema (De Bono, 1970). Como se puede apreciar, hay muchas estrategias para solucionar problemas; sin embargo, esta Guía se enfoca principalmente en dos de estas estrategias: Heurística y Algorítmica. Según Polya (1957), cuando se resuelven problemas, intervienen cuatro operaciones mentales: 1. Entender el problema 2. Trazar un plan 3. Ejecutar el plan (resolver) 4. Revisar Numerosos autores de textos escolares de matemáticas hacen referencia a estas cuatro etapas planteadas por Polya. Sin embargo, es importante notar que estas son flexibles y no una simple lista de pasos como a menudo se plantea en muchos de esos textos (Wilson, Fernández & Hadaway, 1993). Cuando estas etapas se siguen como un modelo lineal, resulta contraproducente para cualquier actividad encaminada a resolver problemas. Ilustración 1-1: Interpretación dinámica y cíclica de las etapas planteadas por Polya para resolver problemas. Es necesario hacer énfasis en la naturaleza dinámica y cíclica de la solución de problemas. En el intento de trazar un plan, los estudiantes pueden concluir que necesitan entender mejor el problema y deben regresar a la etapa anterior; o cuando han trazado un plan y tratan de ejecutarlo, no encuentran cómo hacerlo; entonces, la actividad siguiente puede ser intentar con un nuevo plan o regresar y desarrollar una nueva comprensión del problema (Wilson, Fernández & Hadaway, 1993; Guzdial, 2000). TIP La mayoría de los textos escolares de matemáticas abordan la Solución de Problemas bajo el enfoque planteado por Polya. Por ejemplo, en “Recreo Matemático 5” (Díaz, 1993) y en “Dominios 5” (Melo, 2001) se pueden identificar las siguientes sugerencias propuestas a los estudiantes para llegar a la solución de un problema matemático: 1. COMPRENDER EL PROBLEMA. • Leer el problema varias veces • Establecer los datos del problema • Aclarar lo que se va a resolver (¿Cuál es la pregunta?) • Precisar el resultado que se desea lograr • Determinar la incógnita del problema • Organizar la información • Agrupar los datos en categorías • Trazar una figura o diagrama. 2. HACER EL PLAN. • Escoger y decidir las operaciones a efectuar. • Eliminar los datos inútiles. • Descomponer el problema en otros más pequeños. 3. EJECUTAR EL PLAN (Resolver). • Ejecutar en detalle cada operación. • Simplificar antes de calcular. • Realizar un dibujo o diagrama 4. ANALIZAR LA SOLUCIÓN (Revisar). • Dar una respuesta completa • Hallar el mismo resultado de otra manera. • Verificar por apreciación que la respuesta es adecuada. EJEMPLO En un juego, el ganador obtiene una ficha roja; el segundo, una ficha azul; y el tercero, una amarilla. Al final de varias rondas, el puntaje se calcula de la siguiente manera: Al cubo de la cantidad de fichas rojas se adiciona el doble de fichas azules y se descuenta el cuadrado de las fichas amarillas. Si Andrés llegó 3 veces en primer lugar, 4 veces de último y 6 veces de intermedio, ¿Qué puntaje obtuvo? (Adaptado de Melo (2001), página 30). R/. COMPRENDE • Leer detenidamente el problema • ¿Cuántos colores de fichas se reparten? • ¿Cuántas fichas rojas, azules y amarillas obtuvo Andrés? • ¿Qué pregunta el problema? PLANEA • Para hallar el puntaje que obtiene Andrés por sus llegadas de primero, calcular el cubo de la cantidad de fichas rojas. • Para hallar el puntaje por sus llegadas en segundo lugar, calcular el doble de la cantidad de fichas azules. • Para hallar el puntaje que pierde por sus llegadas en último lugar, calcular el cuadrado de la cantidad de fichas amarillas. • Para hallar el puntaje total, calcular la suma de los puntajes por las fichas rojas y azules, restarle los puntos de las fichas amarillas. RESUELVE • Por tres fichas rojas: 3 3 = 27 puntos • Por seis fichas azules: 6 x 2 = 12 puntos • Por cuatro fichas amarillas: 4 2 = 16 puntos • Para obtener el puntaje final de Andrés, sumar los puntos obtenidos con las fichas rojas y azules (27 + 12 = 39 puntos) y de este resultado restar los puntos representados por las fichas amarillas (39 – 16 = 23 puntos). REVISA