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1. INTRODUCTION 

Consider the Pascal triangle, written as an infinite lower triangular 
matrix 

0 

(;t> (‘I) (l) ... (:> ‘.’ (:> ... (I) 
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Its rows have the following elementary property [3]: for n 3 2, 

if n = pa, 

otherwise 

(p a prime and a > 1, an integer). 
The problem which we discuss in this paper is that of obtaining a for- 

mula for the gcd of any number of consecutive terms in a given row of this 
matrix, say 

d(n;r,.s):=gcd {(;),k=r ,..., s}; (2) 

where nar>O and s3r. 
We shall solve this problem completely. At the same time, we shall deter- 

mine certain other sets of binomial coeffkients chosen in the rows, 
columns, or diagonals of the Pascal matrix, whose gcd is equal to d(n; r, s). 

The main steps in the solution are as follows. We begin by proving a for- 
mula for d(n; 1, s) in Chapter 2 (Theorem l), and then consider the case 
r > 2. As we shall see in Chapter 5 (Theorem 2), the formula for d(n; r, s) is 
relatively simple when s is sufficiently large with respect to r: 

d(n;r+l,s)= n d(n-I; 1,s) if s > 2r. 
/=O 

If r <s < 2r, the right side of this identity must be multiplied by an 
additional factor which is a product of certain primes from the interval 
[2, r]; this factor is determined in Chapters 6 and 7 (Theorem 3). 

Throughout this article, we denote the gcd of integers a, ,..., a, by 
(a I ,..., a, 1. 

For a discussion of related problems, see [ 1 and 41; the latter includes 
an extensive bibliography. 

2. THE CASE r = 1 

If d(n; r, S) is defined as in (2), and if s > n or r = 0, then d(n; r, s) = 1 
since (;;) = (;) = 1. Accordingly we shall assume, whenever it is convenient, 
that n>s>r>l. 

We begin by proving 

LEMMA 1. For n>sa 1 we have 

(3) 
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Proof From the recurrence formula 

103 

(4) 

one easily deduces the identity 

which implies that 

d(n; 1,s) “T1 
I( 1 

+(-1)5+1; 

(3) follows immediately. 
We can now prove our basic formula, of which (1) is a particular case. 

THEOREM 1. For n >, s >, 1, we have 

d(n; l, s, = [ lElv0, p”‘,n3”,‘“‘,..., se&l’]’ (5) 

where 

&j(m) = 1 ifi I m, 

=o otherwise, 

and where the square brackets in the denominator denote the lcm of the 
integers they enclose. (The denominator on the right side of (5) is the lcm of 
the positive divisors of n that do not exceed s.) 

Proof. For simplicity of notation we write &j in place of E](n). The proof 
is by induction on s. For s = 1, (5) asserts that d(n; 1, 1) = n, which is 
obviously true. 

Now assume that (5) holds with s - 1 instead of s, for some s with 
2 <s 6 n. We write 

d(n; l,s)= 

and distinguish 2 cases, according to whether s divides n or not. 

(a) If s 1 n, we use (6) and Lemma 1 to get 

d(*;l,s)=(d(*:Ls-I),F(:I:))=(d(n;I;s-I),:). 
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Then (5) follows on using the induction hypothesis, since E,~ = 1 and since 

if d, and d2 divide n (n > 1). 

(b) If sfn, then 

cl’:‘, 2”2 )...) (s-1)&s-‘] = Cl”‘, 2”‘)...) P], 

since e,, =O; (6) and the induction hypothesis then yield 

n 

4% l,s)= c*e,, 2E: )...) f?] s 
( ( i> 

. 

From this, (5) follows on observing that (for any Y 

(n, s)l[l”‘, 2Q )...) P] and n 
n- 

s- 

whence 

1, s with nBs2 1) 

1 n 

1 ) 0 
=.S 

s ’ 

Cl”‘, 21: )...) P, 

This concludes the proof of Theorem 1 

Remark. Using the prime number theorem, one can deduce from 
Theorem 1 that for any 6, 0 < 6 < 1, there exists an n,(6) such that 
d(n; l,s)>n’-a ifnan, and s<(6/2) log n. 

3. TRIANGLES 

Let n > s > r 3 0, and consider the binomial coefficients (7) with 
n<m<n-r+s and m-n+r<l<s, arrayed as in the matrix of Chap- 
ter 1. They form a triangle, say r(n; r, s), with vertices (y), (z) and (“-,; ‘“), 
right-angled at (z). We will speak of rows, columns, and diagonals of this 
triangle as we would for the matrix itself, and number these lines starting 
from (;). For example, the vth column of 7’(n; r, s) consists of the binomial 
coefficients (:I:), k = 0 ,..., v (0 < v < s - r). 

We shall show that d(n; r, s), the gcd of the coefficients in the first row of 
T(n; r, s), is equal to the gcd of certain other sets of s - r + 1 binomial coef- 
ficients taken from the same triangle. 
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The simplest case is that in which s - r = 1. Since (a, b) = (a, a + b) = 
(b, a+b) we have by (4), 

((Cl), (;I))=((13 (7 ‘)) (7) 

and 

We generalize (7) and (8) by proving 

PROPOSITION 1. Ifn>s>r>O and if 
then 

r+v<j,Bs for v=O, l,..., s-r, 

d(n;r,s)=((~~.(n/:l),...,(nitv),...,(n~~r_tr”)). (9) 

(d(n; r, s) is equal to the gcd of any set of s-r + 1 binomial coefficients, 
chosen one in each row of T(n; r, s).) 

ProoJ: We argue by induction on s - r. For s-r = 1, (9) follows from 
(7) and (8). Now assume that (9) holds for all T(n’; r’, s’) with s’ - r’ = 
d- 1 (some d> 2), and consider a T(n; r, s) with s - r = d. By applying the 
induction hypothesis to 7’(n + 1; r + 1, s), we see that it suffices to prove 
that 

,d(n+l;r+l,s) =d(n;r,s) ifr<k<s. 

Now for r<k<s we have 

(( ! z ,d(n+l;r+l,s) ,d(n+l;r+l,s) 

by repeated application of the case s - r = 1. And by repeated application 
of (7), 

cc > 
: , d(n+l;r+l,s) =d(n;r,s), 

> 
(10) 

thus proving Proposition 1. 
The same type of proof will establish the following generalizations of (7) 

and of (8) respectively, 
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PROPOSITION 2. If n>s>r>,O andifO<i,<vfor v=O, l,...,s--r, then 

d(n;r,s)=(@),(::~) ,..., (:I:) ,..., (n’:Ur)). (11) 

(d(n; Y, s) is equal to the gcd of any set of s-r + 1 binomial coefficients, 
taken one in each column of T(n; r, s).) 

PROPOSITION 3. Zf n > s > r 3 0 and if r + v < k, 6 s for v = 0, I,..., .y - r, 
then 

d(n;r,s)=((n-L:ko) ,..., (n-riVk”-v) ,..., (I)). (12) 

(d(n; r, s) is equal to the gcd of any set of s - r + 1 binomial coefficients, 
chosen one in each diagonal of T(n; r, s).) 

We call the first row, first diagonal, and last column of T(n; r, s) its sides. 
The following result contains Propositions 1, 2, and 3 as particular cases; 
they are used in its proof (which we omit). 

PROPOSITION 4. Let C,, v=O,..., s - r, be binomial coefficients chosen in 
T(n; r, s). Zf some side of this triangle contains exactly one of the C,; if on 
removing this side the remaining triangle has the same property, and so on, 
until a single binomial coefficient is left, itself one of the C,, then the gcd of 
C o ,..., C,- r is equal to d(n; r, s). 

We use Theorem 1 and Proposition 2 to establish 

LEMMA 2. Let p be a prime and n and a positive integers; let n >p’. 
Writen=kp8+r withpyk, O<r<p”-1 andbaa. Then 

pP-” n 
IL) UT . (13) 

(r is the remainder and kpa-’ the quotient, when n is divided by pa.) 

Proof It follows from (5) that if p” (1 m and s =p” with fl> a > 1, then 

pBea II d(w 1, s) (14) 

and 

pB-‘OL-‘)l(d(m; 1, s- 1). (15) 
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Proposition 2 and (14) imply that 

pB-” 
li( d(m;l,s-l), *:, 

( 1) 
) r = 0, l,..., s - 1; 

from this and (15) we deduce that ,&” I[(“:‘), which is (13) if m = kp”. 
Lemma 2 could also be proved by appealing to a theorem of Glaisher’s 

[2] according to which the number of times a prime p divides (7) is equal 
to the number of borrows when the subtraction n -I is done in base p. 

4. DIVISORS OF d(n; r,s) 

After Theorem 1 and Lemma 2, the next step towards our formula for 
d(n; r, s) is 

PROPOSITION 5. For n > I, and 0 d I, < I, <s, we have 

(d(n-I,;l,s),d(n-Z,;l,s))=l. 

Proof: It clearly suffices to show that 

(d(n; 1, s), d(n - 1; 1, s)) = 1 (16) 

for all n > 1 and all 1 with 1 < I < s. We may assume that n > s. 
By (lo), d(n - I; 1, s) divides d(n - I+ 1; 2, s), hence by induction divides 

d(n-Z+k;k+l,s) for l<k+lds. Taking k=l-1, we see that 
d(n-I; l,s)ld(n- 1;1,s)l(“;‘), if 16f<s. Therefore, the left side of (16) 
divides (d(n; 1, s), (“; ‘)); we conclude the proof by appealing to Lemma 1. 

PROPOSITION 6. If n 3s 2 r 3 1, then 

/F. 4n - 4 1, s) 4n; r, s). (17) 

Proof. Because of Proposition 5, it s&ices to show that d(n - I; 1, s) 
divides d(n; r, s) for 0 < I6 r - 1. In the proof of Proposition 5, we showed 
that d(n - Z; 1, s) divides d(n - I+ k; k + 1, s) for 1 6 k + 1 6 s. Since 
Z+l<r<s, we may take k=l: d(n-I;l,s)Jd(n;Z+l,s) for O<l<s-1. 
Since obviously d(n; I+ 1, s)l d( n; r, s) for 0 < 1~ r - 1, the proof is com- 
plete. 
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5. THE CASE s B 2r 

In this chapter, we prove 

THEOREM 2. For n > s B 2r > 2, 

d(n; r + 1, s) = fi d(n - 1; 1, s). 
I=0 

(18) 

We introduce some notation. As before, p always denotes a prime. For 
rational a #O, let N be the integer such that pN \I a; then we write 
ord,(a) :== N and up := pN. If a and b are rational (a # 0 and b # 0), we 
write a-p b if ap = b,, and a 4, b if ap d b, ; when there is no ambiguity 
concerning the choice of p we simply write a N b, respectively a < b. 

The following lemma is required several times in the sequel. 

LEMMA 3. Let n>m>rfl>l, and pin. Set n=pv, p=[r/p] and 
p = [m/p]. Then 

(i) d(n; r+ 1, nz)- ,~(v-CL)(;) ifpp<r+ 1, 
(ii) d(n; r + 1, rn)mll d(v;p+l,p)$pp>,v+l. 

Proof: Since 

n 

0 

n n-l n-2 n-(a-l) = _ . - . - . 
a a 1 2 u-l ’ 

it is clear that for n =pv, 

n 0 pvv-I v-2 v-a a-l 
---. -...- CC= (19) a al 2 a ’ c -. 1 

P 

Now if r+ 1 <a<m and pp<r+l, then ftp<a<(p+l)p, whence 
CL = p and p [a, so that 

n 

0 

v-l v-2 V-P 
NpvT-‘2’ ‘.. 

.---=p(v-p) 
V 

a I-1 0 P ’ 

as required in (i). 
To prove (ii) we begin by showing that if k is an integer and r + 1 < kp, 

then 

d(n; r + 1, kp)-d(v; p + 1, k). (20) 
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Indeed, 

(d(n;r+l,kp)),= mm 

and (19) shows that 
And among all a 
a = (c( + 1) p. Since o! 
we have from (19), 

for fixed n and tl, (z), is smallest when ap is largest. 
such that ctp < a d (a + l)p, a, is largest when 

varies from p to k - 1 when a varies from r + 1 to kp, 

d(n;r+ 1, kp)- min L.-. ... .-...- 
v-l 

p<LY<k-1 or+1 1 

= min -d(v; p + 1, k). 
p<a<k-l 

Thus (20) is verified, and with it (ii) for m = ,up. Finally, if r + 1 < pp < m 
we have 

4n; r + 1, m) = (d(n; r + 1, pp), d(n; pp + 1, m)) 

so that by (20) and (i), 

d(n; r+ 1, m)- 
( 

d(v;P+l,P),P(v-P) ; 
( )) 

-d(v;p+ACLL 

since p(v - p)(i) > (;) > d(v; p + 1, p). The lemma is now proved in both 
cases. 

After this preparation we pass to the 

Proof of Theorem 2. Because of Proposition 6, it suffices to establish 
that 

d(n;r+l,s) fi d(n-I;l,s) ifnasa2rZ2. 
I=0 

We do this by a double induction argument. First we show that if the 
theorem holds for some s, it also holds for all larger s (n and r being fixed). 
Then we show that Theorem 2 is true for s = 2r, r B 1, if it is true for s = 2, 
r= 1. 

(a) Znduction on s. Fix n and r, and suppose (18) is true for s = s0 - 1 
(some s,ar+2). By (5), 

d(n-1; l,s-l)=pd(n-I; 1,s) ifs=p”andp”jn-1, 

=d(n-1; 1,s) otherwise. 
(21) 
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By the induction hypothesis, 

@;r+l,s,)= fi d(n-1; 1,&)-l), * 
( 

. 
/=O ( )J SO 

We distinguish the 2 cases envisaged in (21). If so =p” and p”j’n - 1 for 
0 Q 16 Y, or if s0 is not of the form p”, (21) and (22) yield 

@;r+l,Sg)= fi d(n-I;l,So), n 
i ( i) 

= fi d(n - 1; 1, So), 
I=0 SO /=O 

for by (17) this product divides d(n; r + 1, so), itself a divisor of (,;). 
Otherwise, s0 = p” and pU 1 n - I for some 1, 0 < 16 r (since 0 6 I < Y and 

p” = so > r + 1, there can be at most one 1 for which pU / n - 1). Then, from 
(21) and (22), 

d(n;r+ l,p”)= p fi d(n-I; l,p”), a 
( /=O ( )I PY 

= fi d(n-1; l,p”), 
I=0 

where the last equality can be justified as follows. In (23), the product 
divides the binomial coefficient, as in the preceding case. Further, for the 
prime p, 

0 
;u -fI d(n-1; l,p”). 

I=0 

Indeed, n-l=pbk (with p/k, some b and 1, b>a, Obl<r<p”-l), so 
that pbP”ll($) by (13); by (14), pbPO/(d(n-I; 1,~“). 

(b) Induction on r. We wish to show that 

d(n; r + 1, 2r) fi d(n - I; 1,2r) forr> 1. 
I=0 

This is true for r = 1 since by (5 ), 

n-l 
d(n;2,2)=kn(n-l)=&.m=d(n;1,2)d(n-l;1,2). 

Proposition 6 and part (a) of the present proof allow us to formulate the 
induction hypothesis as follows: we assume that for some r >, 2, 

d(n;m+l,s)= fi d(n-I; 1,s) for 1 <m<r- 1, if nks>2m. (24) 
I=0 
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Under this assumption we prove that (24) also holds for m = r, by showing 
that 

p’Id(n; r+ 1,2r)=p” fi d(n-I; 1,2r). 
/=O 

(25) 

For this we distinguish 3 cases: p[n - r, pj’n, and p 1 (n, r). 

(b,) If pj’n - r, then 

whence 

d(n;r+l,s)-d(n;r,s) ifp/n - r. (26) 

On setting s = 2r in (26) and applying the induction hypothesis (24) with 
m=r- 1 and s=2m+ 2 to d(n; r, 2r), we see that p’ divides 
JJ;:,’ d(n - 1; 1,2r), and (25) must hold. 

(b,) If p/n, we use the relation 

d(n; r + 1, s)-d(n - 1; r, s) ifpI (27) 

which we establish by showing that (for all n, r, s) 

d(n - 1; r, s)j d(n; r + 1, s)l nd(n - 1; r, s). (28) 

Indeed, the first part of (28) is implied by (10); for the second we combine 
the identity k(z) = n(;:i),which implies that d(n;r + l,s)jnd(n - l;r, s - l), 
and (4) which shows that ((y), n(‘j::)) divides n(“;‘). 

Then (25) follows from (27) with s = 2r, and (24) with n - 1 in place of n 
and m=r-1, s=2m+2. 

(b3) If p [(n, r), Lemma 3(ii) can be applied to d(n; r + 1, 2r): since 
m=2r we have pp=m=2r>r+l. By this lemma, d(n;r+l,2r)- 
d(v; p + 1,2p) with pv = n and pp = r. And (24) applies to d(v; p + 1, 2p), 
since p < tr < r - I. Therefore 

d(tz;r+ 1, 2r)- fi d(v-A; 1, 2p), 
I=0 

so that p” divides one of the (pairwise relatively prime) factors 
d(v - 1; 1, 2p), 0 < J.6 p. But again by Lemma 3(ii), d(v - 1; 1, 2p)- 
d(n - Ap; 1,2r); since 0 d Ap Gpp = r, we have shown that p” divides one of 
the factors on the right side of (24). 

This concludes the proof of Theorem 2. 
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6. THE CASE s < 2r: RECURRENCE FORMULAS 

We know that nizO d(n - I; 1, s) divides d(n; r + 1, s), and that the two 
areequalifs>2r.Forr+l<s, wesets=2r-6(6<r-1)anddefinean 
integer E,(n, r) by 

d(n;r+1,2r-iS)=E,(n,r) fi d(n-I;1,2r-6); (29) 
I=0 

for 6 $0, (29) holds with EJn, r) = 1. 
The prime divisors of Es(n, r) divide d(n; r + 1, s); in particular, it suffices 

to consider the primes that divide (,; 1). 
In this chapter we prove 5 propositions which, for a given p, reduce 

the determination of ord,(E,(n, r)) to that of ord,(E,.(n’ r’)), with 
rz’ + r’ + 6’ <n + r + 6. This yields 5 recurrence relations which we solve in 
the next chapter to obtain a formula for E,(n, r). 

We consider the following cases, which we analyze in Propositions 7 
through 11 (in all cases, we assume 1 < 6 6 r - 1): 

Case 1. p[n - r. 

Case 2. p fn. 

Case 3. p 1 (n, r), with the subcases 

(4 plh r, 6) 

(b) plh r), PY~ and r>p+h 

(c) pl(n,r),pj’b and 6<r<p+6. 

FR~PosITI~N 7 (Case 1). If p[n - r, then 

E,(n, r) w Ed - Jn, r - 1). (30) 

Proof: We set s = 2r - 6 in (26) and expand the right side according to 
(29): 

d(n;r+1,2r-6)-d(n;r,2r-6) 

r-1 

Hence 

=E,_,(n, r- 1) fl d(n-I; 1,2r-6). 
I=0 

d(n;r+1,2r--6)-E,-,(n,r-1) fi d(n-I;1,2r-6), 
I=0 

because d(n-r; 1,2r-6)- 1 if pfn-r. On comparing with (29), we get 
(30). 
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PROPOSITION 8 (Case 2). rfp j’n, we have 

E,(n, r)-E,-,(n - 1, r- 1). (31) 

Proof: We use (27) with s=2r-6, and proceed as in the proof of 
Proposition 7. 

For the remaining cases we appeal to Lemma 3. 

PROPOSITION 9 (Case 3(b)). If pl(n, r), pj’6, and r >p + 6, then 

&h r)-E6,+,l(nl~rl)~ 

where n=pnl, r=pr,, and 6, = [S/p]. 

(32) 

Proof: Lemma 3(ii) applies to d(n; r + 1, 2r - 6), since pp B r + 1 in 
Case 3(b). Indeed, pp > r + 1 is equivalent to p 2 r, + 1 since p and rl are 
integers; similarly, r > 6 +p implies r, 2 6, + 2. And ,u = [(2r - 6)/p J = 
2r, -6, - 1 since p/6. By Lemma 3 then, d(n; r + 1, 2r-S)- 
d(n,; r, + 1,2r, - 6, - 1) whence with (29) and a second application of 
Lemma 3(ii), 

d(n;r+ 1,2r-6)-E&,+, (n,, rl) fl d(n, - 1; 1,2r, - 6, - 1) 
i. = 0 

-&,+I (n,, rI) fi d(n-App; 1, 2r-6). 
A=0 

Hence, since d(n - I; 1, 2r - 6) - 1 if p/n - I, 

d(n;r+ 1, 2r-6)-E6,+1 (n,,rI) fi d(n-I; 1,2r-6), 
I=0 

and (32) follows. 

PROPOSITION 10 (Case 3(c)). Zfp 1 (n, r), py6, and 6 < r <p + 6, then 

&(n, r) - 
AnI -rl) 

db-r,; Lr,) 
-L2h rl - 11, 

where n =pn, and r =pr,. 

Proof: Lemma 3(i) applies to d(n; r + 1, 2r - 6), because pp < r + 1 in 
Case 3(c): 6 < r <p + 6 implies 0 < r, -6/p < 1, so that p = [(2r - 6)/p] = 

Crl + (rl - WP)I = rl and pp =pr, = r. By the lemma we know that 

d(n;r+1,2r-6)-p(n,-r,) =ph -rl)4nt; rl, rl), 
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whence by (29), 
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d(n;r+1,2r-6)- 
Ph-r,) 

d(n, --r,; 1, r,) 
ErIp2(n1, rl - 1) fi d(n, -1; 1, r,). 

i=O 

Since d(n,-A; l,rl)-d(n-Ap; 1,2r-6) by Lemma3(ii), the proofcan be 
concluded as in the previous case. 

PROPOSITION 11 (Case3(a)). Zfpj(n,r,6) and n=pnl, r=pr,, 6=p6,, 
then 

E,(n, r)-&,(nl, rl). (34) 

Proof. By (20) we have d(n;r+ 1,2r-6)wd(n,;r, + 1,2r,-S,), and 
d(n--Ap;1,2r--6)-d(n,-I;1,2r,-6,) if i is an integer; one then 
proceeds as in the proof of Proposition 9. 

7. THE FORMULA FOR E,(n, r) 

Let E,(n, r) be defined by (29), with n 3 Y + 1 and 6 < r - 1. In this chap- 
ter we obtain the representation of E,(n, r) as a product of primes. 

THEOREM 3. We have 

where tr }m denotes the least residue of r module m (0~ {r}, drn- I), 

L(m) :=T 
ifm =pk (k >, l), 

otherwise, 

and 

e,(n, r) = ‘9 E,(n - i) 
,=O 

(36) 

with E,(n - i) defined as in Theorem 1. 

We need a lemma, which provides another expression for the right side 
of (35). 
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LEMMA 4. Let Fs(n, r) be the product on the right side of (35), and let 
n>r+l and6<r--1. Then, 

f’&, r)= n 4m). (37) 
2<m<r 

m-{r),>r+l--6 
inlmG irim 

Proof Since 0 d {r}m d m - 1, at most one of the s,(n - i) in (36) is 
equal to 1. This occurs if and only if there exists an integer i, 0 < i < {Y)~, 
such that m/n-i, i.e., if and only if (n}, 6 {r},. 

We are now in a position to prove Theorem 3. 

Proof of Theorem 3. When 6 < 0, we have F,(n, r) = 1 (empty product) 
and E,(n, r) = 1 (Theorem 2). Hence, to prove Theorem 3 it suffices to 
verify that F,(n, r) satisfies the same recurrence relations as E,(n, r). We 
consider the same cases as in Propositions 7 through 11. 

Case 1. We must show that 

F,(n, r)mF6-?(n, r- 1) if pfn - r. 

It follows from (37) that 

F,(n, r) =pN1 and F6-Jrz, r- l)wpN2, 

where 

(38) 

N,=#(s>llp”dr,p”-{r ),$kr+ l-6, and (n},s< {r},,} (39) 

N,=#{skl~p”<r-l,p”-{r-l jpr>r+2-6, and {nJps< {r-l},,}. 

In Case 1, the conditions for N, imply that p”j’r : {n>,, # {r}ps because 
pj’n - r, whence (r >,+ 2 1 by the last inequality in (39). The conditions for 
N2 have the same implication: ps - {r - 1 }ps z r + 2 - 6 3 3, whereas 
{r-l},,=p”--1 ifp”Ir. 

Now when p’[r, we have ps < r if and only if ps < r - 1; p”[r is equivalent 
to {r-l)p~={r}ps-l; and as already observed, (n}p, # {r},, in Case 1. It 
follows that N, = N,, and (38) holds as asserted. 

Case 2. Here one proves that N, = N, ifpyn, where N, is as in (39) and 

N,=#{~>lIp~dr-l,p”-(r-1},?3r+2-6, 

and (n- l},d (r-ljti}. 

The details are similar to those of Case 1. 
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Case 3(a). If pI =pn,, r =pr,, and 6 =p6,, we must show that N, = Nq, 
with N, as in (39) and 

Nq=#{~~11pS~rl,pS-{rI}PSZr1+1-6,, and {n,},s<{rl}p}. 

But s = 1 is not counted in N, when p I(r, 8); for if it were we would have 
p=p- {r},kr+ 1-6=p(r, -a,)+ 1 >p, since r>6 and consequently 
rl >6,. Hence, in Case 3(a), 

N, = #{s32\p”<r,p”- {r}@>r+ l-6, and {h}$< {r>,,}. 

Now if k is a positive integer and pi k, say k =pk,, then 

{k),,=p{k,},,-1. (40) 

Therefore, 

N,= #(s32~p”-%ry1,ps~‘- {rl}psml>r,+ 1 -6,, 

and {n,},,-~ d {r,}p’-l} 

=N4. 

Case 3(b). We now show that 

Fdn, r)-F6,+l(n,, rl) ifpl(n, r),pj’b, and r>p+h 

(here, n = pn, , r =pr, , and 6, = [S/p] ). The proof consists in verifying that 
N, = N, in this case, with N, as before and 

N,=(s~1~p”~r,,p”-~r,~,~~r,-~,,and~n,~,~6~r,~,~~. 

Now s= 1 is not counted in N, ifplr and r-6>p, since p=p- {r}P> 
r + 1 - 6 >p + 1 is impossible. If we combine this remark with (40) and the 
observation that [ (6 - 1)/p] = [6/p] when pj’6, we see that 

N,= #(~>2~p~~~<r,,p~~!-- jrl}Pb--~>rI-d,, 

and {n,},-1 d {rl}P5-l}. 

=N,. 

Case 3(c). Here we must prove that 

F6(n, r) - An1 -rl) 
4n, --r,; 1, r,) 

F,, -An llrl-l) 

ifp/(n,r),pj’d, and h<r<p+d (41) 
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(with n=pn, and r=pr,). By (5), 

with a= 
log s [ 1 logp’ 

so that what we want to prove, subject to the conditions in (41), can be 
written, using (37) as 

N, = N, + min(ord,(n, - r,), 6) + 1 log rl with b= - [ 1 h?P ’ 
(42) 

where N1 is defined by (39) and 

N,=#(s~11p”~r,-1,p”-{r,-l},s~2, and (n,}p~~(rl-l}p~~. 

Now [(S- 1)/p] = [6/p] = r1 - 1, since pj’6 and r-p< 6 <r; in Case 
(40) and then 3(c) the conditions for N, can accordingly be written, using 

replacing s- 1 by S, as 

(43) s>O,p”<r,,p”- {rl}ps> Land (n,>~6 {rl)ps 

The conditions for N, are equivalent to 

s~l,p”~r,-l,p”-{r,},,~l, and {~l}p”~{rl}p~-l, (4) 

since on the one hand ps - {Y r - 1 }ti > 2 is equivalent to p” fr r, therefore to 
{rl-l}ps={rl}ps-l, hl w  i e on the other hand the last condition in (44) 
implies that psfrl. 

To prove (42) we calculate N, - N6 by counting the number of integers s 
which satisfy (43) but not (44). There are 3 ways in which this can occur: 
by taking, in (43), 

(i) s=O, or 

(ii) P”=r,, or 

(iii) {nl jti = {rl lPS. 

But (i)z-(iii) since {nr}r = {rl}l =O; and (ii)*(iii) since (43) with rl =p” 
gives (r~r},~= (r,}$ = 0. The s which satisfy (iii) and the conditions in (43) 
are the s such that 

1 dp’dr, and n, -rr (modp”) 

(the third condition in (43) is always satisfied); they are 

min ord,(n, - rl) + 1, 
[z$]+l) 
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in number, as required in (42). This concludes the proof of Theorem 3. 

8. COMPUTING E,(n,r) 

We now apply the results of the preceding chapter to the calculation of 
E&n, r) for given 6. We have 2 formulas for E,(n, r); (37) was used in the 
proof of Theorem 3, and we now return to (35). In order to simplify our 
calculations we bring (35) to the following form. 

PROPOSITION 12. Let E,(n, r) be as in (35). Then, in the notation of 
Theorem 3, 

C(W) rl 
E&k r) = n 

y  (nr) [(l/2)16-1)1 
l(m)m ’ n %(r -j)+JJ’, (45) 

m=r+l-6 ,=O 
m-/r},.r+l-ii 

where 

dj(n, r) = t E,-j(n - i). 
i=o 

(46) 

ProoJ: Write (35) as E,(n, r)= I7,I7,, taking 2 <rn< r/2 in 17, and 
r/2<mdr in f12 (with m- {rj,>r+ l-6 in both). The first product in 
(45) is equal to I7,, since 2<m<r/2 and mar+ l--6+ {r},ar+ l- 
6 2 2 in III,. 

Now consider 

n2= n em(n.r) 44 . (47) 
(r/2)<mGr m - (r},3r+ 1 -ii 

As m <r < 2m iff (r}, = r-m, the conditions on m in (47) are equivalent 
to 0 ,< r - m <m and 0 < 2(r - m) d 6 - 1. And the latter implies the for- 
mer, since 6 - 1 6 r - 2. Hence the product in (47) is taken over all m such 
that O< r-m< [4(S - l)]. We transform it by taking j := r-m as new 
variable; in order to see that 17, is equal to the second product in (45) we 
must verify that e,_,j(n, r) = dj(n, r), as defined by (46). For this, set 
m = r-j in (36) and observe that { r},-j =j, since r = (r -j) +j and 
O<j<r-j (becausej<$(a- ) 1 < tr - 1 < ir). This completes the proof. 

Remark. The first product in (45) is empty, if r + 1 - 6 > [$I: 

n, = 1 if [+(r + l)] > 6 - 1, (48) 

in the notation used in the proof. 
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The following examples are easily worked out using Proposition 12 and 
(48); remember that r 2 6 + 1 always. 

For 6=1 and r>2, and for 6=2 and r>3, 

E,(n, r) = A(r)“r’“’ =p ifr=pkandpkIn, 

=l otherwise. 

When 6 = 5, 

E,(n, r) = 2 2E2(n)+uln- l)3e3(n)5E5ln(n- I)) if r = 6, 

= 5ESW ~ I)(n ~ 2))7&7Wl if r = 7, 

= z&4(“) + E8(n)7&7(+ 1)) if r = 8, 

= qryrwqr _ 1 )C,-I(n+ 1 )I 

=~(r-2)“,~2(“(“~Il)+E~~2(n~2j if r 2 9. 
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