Sumas y diferencias de cuadrados y cubos
Factorización de la suma de dos cubos

Objetivo

Factorizar una suma de cubos.

Visualizar geométricamente la fórmula que se usa para la factorización de una suma de cubos, y aprender a aplicarla correctamente.

Procedimiento

La suma de dos cubos se descompone en dos factores: el primero es la suma de los números cuyos cubos se suman y el segundo es la suma de los cuadrados de los números menos su producto. Es decir, $a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})$.

Solución

El siguiente recuadro interactivo permite visualizar la fórmula descomponiendo la suma de dos paralelepípedos de volúmenes $a^{2}(a+b)$ y $b^{2}(a+b)$ como la suma de dos cubos con volúmenes $a^{3}$ y $b^{3}$ y un paralelepípedo con volumen $ab(a+b)$. La fórmula deseada se obtiene restando a ambos lados $ab(a+b)$.

Por lo tanto: $(a+b)(a^{2}-ab+b^{2})=a^{3}+b^{3}$.

Ejercicios

Escribe dentro de los espacios en blanco los valores que necesitan las variables de las siguiente expresiones, para que el producto del lado derecho sea la factorización de la expresión como una suma de cubos. Presiona ↵ al terminar de escribir cada valor. Para obtener un valor a través de un cálculo:

  1. Se escribe la expresión correspondiente, p.e. $2$x$5$, $3$^$2$ ó $sqrt(36)$
  2. Se pulsa Val para igualar al valor, p.e. $2$x$5=10$, $3$^$2=9$ ó $sqrt(36)=6$
  3. Se pulsa ⤺ para que quede sólo el valor, p.e. $10$, $9$ ó $6$
  4. Se pulsa ↵ para terminar.


Esta unidad ha sido revisada, corregida y actualizada en enero de 2021 para ser publicada en la Web de RED Descartes dentro del subproyecto denominado Prometeo, manteniendo el mismo nombre que le dieron en la versión original, cuyos créditos se reflejan después de este apartado.


Actualización: Ángel Cabezudo Bueno


Unidades interactivas para bachillerato desarrolladas por la Dirección General de Evaluación Educativa de la UNAM en colaboración con el Instituto de Matemáticas y el Proyecto Arquímedes.

Autor: Gabriel Gutiérrez García

Edición académica: José Luis Abreu León

Edición técnica: Norma Patricia Apodaca Alvarez


Adaptado a DescartesJS en el proyecto LITE 2013 financiado por CONACyT.

Adaptación: Víctor Hugo García Jarillo y Deyanira Monroy Zariñán

Asesoría técnica: José Luis Abreu León, Oscar Escamilla González y Joel Espinosa Longi


Adaptado para dispositivos móviles por la DGTIC en colaboración con el IMATE y el LITE. Diciembre de 2014.

Adaptación: Juan José Rivaud Gallardo

Asesoría técnica: José Luis Abreu León y Joel Espinosa Longi

Coordinación: Deyanira Monroy Zariñán


Actualización tecnológica y de estilo, 2019.

Actualización: Joel Espinosa Longi


Los contenidos de esta unidad didáctica interactiva están bajo una licencia Creative Commons, si no se indica lo contrario.

Los componentes interactivos fueron creados con Descartes que es un producto de código abierto.