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XVII. On the Geometrical Forms of Turbinated and Discoid Shells.
By the Rev. H. MoseLey, M.A., of St. John's College, Cambridge, Professor of
Natural Philosophy and Astronomy in King's College. Communicated by
Tromas BeLL, Esq. F.R.S.

Received June 14,—~Read June 21, 1838.

THE surface of any turbinated or discoid shell may be imagined to be generated by
the revolution about a fixed axis (the axis of the shell) of the perimeter of a geome-
trical figure, which, remaining always geometrically similar to itself, increases conti-
nually its dimensions.

In discoid shells the generating figure retains its position upon the axis as it thus
revolves, as in the Nautilus Pompilius (Plate IX. fig. 3.), and the drgonaut. In
turbinated shells, including the great families of Trochi, Turbines*, Murices and
Strombi, it slides continually along the axis of its revolution (fig. 4.). In some great
classes of shells, as the Ammonites, the Nautilus scrobiculatus, the Nautilus spirula,
the Helix cornea, the Trochus perspectivus, the Nerita, the generating figure increases
its distance from the axis at the same time that it increases its dimensions and re-
volves.

Among the generating figures of conchoidal surfaces are to be found various known
geometrical forms. The generating figure of the Conus Virgo is a triangle, that of
the Trochus telescopicus and of the Trochus Archimedis, a trapezoid. The species of
the genus Turbo have for their generating figure a curve, of double curvature, of a
circular or elliptic form, to whose perimeter the axis of revolution is a tangent. The
Nautilus Pompilius is generated by the revolution about its shorter diameter of a plane
curve, approaching very nearly to a semi-ellipse (fig. 3.) ; and the Cypreea by the re-
volution of a similar curve about its longer diameter.

There is a mechanical uniformity observable in the description of shells of the same
species, which at once suggests the probability that the generating figure of each in-
creases, and that the spiral chamber of each expands itself, according to some simple
geometrical law common to all. To the determination of this law, if any such exist,
the operculum lends itself, in certain classes of shells, with remarkable facility. Conti-
nually enlarged by the animal, as the construction of its shell advances, so as to fill up
its mouth, the operculum measures the progressive widening of the spiral chamber, by
the progressive stages of its growth.

Of these progressive stages of the growth of the operculum, distinct traces remain

* The beautiful shell Turbo scalaris (Ventletrap) may be taken as an easy illustration of the properties to be
described in this paper.
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on its surface, under the form in the Turbines (fig. 1.) of certain curved lines, and in
the Neritee (fig. 2.) of certain straight lines, passing from the margin of the oper-
culum (which if produced they would intersect) to a certain spiral line marked deeply
upon its face. To this spiral they are tangents, and may be supposed to generate it
by their consecutive intersections. The spiral eventually passes into the margin of
the operculum, and for a considerable distance traces it.

If the eye be made to traverse one of the curved lines first spoken of in the oper-

culum of the Turbo, or one of the straight lines in the Nerita, from its margin to the
point where it loses itself in the spiral, and if it then follow the spiral until it returns
to the point in the margin whence it set out, it will have traversed the boundary of
a figure which was once the actual boundary of the operculum, which therefore in-
dicates one stage of its growth, and of which all, similarly traced, will be seen to have
similar geometrical forms.
It will further be apparent from this examination, that the operculum has increased
at each stage of its growth, not throughout its whole margin at once, but on a series
of different portions of it lying in different consecutive positions round it; each such
addition being so made as to preserve the above-mentioned geometrical similarity of
the whole*. In all the similar geometrical figures thus visible upon the face of the
operculum, and which have in succession constituted its limits, the pole of the spiral
will moreover be seen to occupy a similar position. The linear dimensions of any
two of them (P, C Q, and P, C Q,) are then to one another as the radii vectores
drawn to similar points in them, and therefore as those (P P, and P P,) drawn to the
extremities of the boundary by which they unite.

To determine, therefore, the law according to which the linear increase of the oper-
culum takes place, that is, the law according to which the linear increase of the sec-
tion of the chamber of the shell takes place, we have only to determine the law accord-
ing to which the radii vectores, drawn to successive points of the spiral visible upon
the operculum, increase, that is, we have only, geometrically, to determine the spiral.

Now in every case this spiral is the logarithmic spiral.

A slight inspection of it is sufficient to suggest the probability that the angle at
which it intersects its radius vector is everywhere the same, and this supposition is
fully confirmed by direct admeasurements grounded upon the following property of
the logarithmic spiral, “That the distances of successive spires, measured upon the
same radius vector produced, from the pole and from one another, are respectively
in geometrical progression ; the common ratio of the progression being in both cases

£27tA where A is the constant angle of the spiral{-.”

* The whole class of shells Haliotis affects the method of formation here described. The shell itself is in
this class generated by additions upon one margin, as in other classes the operculum is generated.
+ Let Ry, Ry 1, Ry 4 2 be consecutive radii vectores taken as above, and R the radius vector corresponding

t0o ®=0 .. R, = RpeOcot A, R'n+l= Roe(9+2"’)°°tA,Rn+2= Roe(®+4m)cot A . Rn+ 1= eZ7cot A
Rypand Ry o =Ry = e2 7ot A (Rp 41— Rp).
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The following distances were measured upon three different opercula from the poles
of their spiral curves to their successive whorls; the distances in the same column
being measured on the same radius vector produced. It will be perceived that for
the same operculum these distances have the same ratio consecutively to one another;
the deviation from this law in no case exceeding that error which of necessity
attaches to the method of admeasurement.

Operculum of the Order Turbo, No. I.

Distance ‘ Ratio. _Di‘stance Ratio, | Distance Ratio. _Di‘stanc.e Ratio.
in inches. I in inches. in inches. in inches.
2| 2es :;(75 2:31 d 2:3 e | 23
1e8 | 232 85 | 3 1-38 23 94 | =%

Operculum, No. II.

Distance | p .0 | Distance Rayﬁo. Distance Ratio.
in inches. in inches., in inches.
.32 25 155 Q.M
. 3-8
1-25 39 1 104 4 62 !

Operculum, No. ITI.

Distance Ratio Distance Ratio
in inches. ' in inches. )
:g 1-33 :_{)g 1-28
123 1-28
‘99 1.28 1215
1-27

The spiral of the operculum is then a logarithmic spiral. Now its linear dimen-
sions in the different successive stages of its progress have been shown to be as the
successive radii vectores of its spiral. The increments of its linear dimensions are
then as the increments of these radii vectores. But by a fundamental property of the
logarithmic spiral, the increments of its radii vectores, corresponding to equal incre-
ments in their angles of revolution, are as the radii vectores themselves. Thus, then,
it follows that the increments of the linear dimensions of the operculum, correspond-
ing to equal angular distances round its pole, are as its existing linear dimensions ;
and, therefore, that the increments of the linear dimensions of the section of the spi-
ral chamber corresponding to these are everywhere as its existing linear dimensions.

The animal, as he advances in the construction of his shell, increases continually
his operculum, so as to adjust it to its mouth.

He increases it, however, not by additions made at the same time all round its

MDCCCXXXVII!, 2z
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margin, but by additions made only on one side of it at once. One edge of the oper-
culum thus remains unaltered as it is advanced into each new position, and placed in
a newly formed section of the chamber similar to the last, but greater than it.

That the same edge which fitted a portion of the first less section should be ca-
pable of adjustment, so as to fit a portion of the next similar but greater section, sup-
poses a geometrical provision in the curved form of the chamber of great apparent
complication and difficulty. But God hath bestowed upon this humble architect the
practical skill of a learned geometrician, and he makes this provision with admirable
precision in that curvature of the logarithmic spiral which he gives to the section of
the shell. 'This curvature obtaining, he has only to turn his operculum slightly round
in its own plane as he advances it into each newly formed portion of his chamber, to
adapt one margin of it to a new and larger surface and a different curvature, leaving
the space to be filled up by increasing the operculum wholly on the other margin.

To make this apparent, let the following be received as a characteristic property
of the logarithmic spiral: “That lines anywhere drawn from its pole, inclined to one
another at the same angle, will intercept between them branches of the curve which,
however different their linear dimensions, will be geometrically similar to each other.”
So that if two lines given in position be imagined to be drawn from the pole of such
a spiral, parallel to its plane, and the spiral be then imagined to be put in motion in
its own plane round its pole, then as its curve revolved under these lines they would
intercept portions of it continually increasing, or continually diminishing in dimen-
sions, and continually receding from or approaching the pole, but all geometrically
similarly to each other and similarly placed.”

Now each new section of the chamber of the shell being similar to the preceding sec-
tion, but greater than it, if the operculum were thrust forward into this greater section
without being turned round in its own plane, any portion of its edge would manifestly
present to the corresponding portion of the perimeter of the new section a similar but
a less curve, which could not be made to coincide with it. If, however, the opercu-
lum be imagined to be turned round in its own plane about its pole in the opposite
direction to that in which the spiral increases, the curve presented by it to this por-
tion of the perimeter of the section will continually approach it, increasing its dimen-
sions, but remaining similar to it,so that at length it will coincide withit. And thus
one margin of the operculum will be made everywhere to fit itself to the side of the
chamber, the coincidence of the other margin remaining to be produced by new
matter added to it.

It will be apparent from a simple inspection of the operculum that the animal does
thus turn it round in its own plane as he advances it, with what is called a screw
motion. -

Such is the theory of the growth of the operculum. There is traced in it the ap-
plication of properties of a geometric curve to a mechanical purpose by Him who
metes the dimensions of space and stretches out the forms of matter according to the


http://rstl.royalsocietypublishing.org/

Downloaded from http://rstl.royalsocietypublishing.org/ on July 28, 2016

OF TURBINATED AND DISCOID SHELLS. 355

rules of a perfect geometry,—properties which, like so many others in nature, may have
also their applicationin art. It instructs us how to shape a tube of a variable section,
so that a piston driven along it shall, by one side of its margin, coincide continually
with its surface as it advances, provided only the piston be made at the same time
continually to revolve in its own plane.

The investigation has now arrived at a point from which the law of the geometrical
description of turbinated shells can be enunciated with greater precision. ¢ They
are generated by the revolution about a fixed axis (the axis of the shell) of a curve,
which continually varies its dimensions according to the law, that each linear incre-
ment, corresponding to a given angular increment, shall vary as the existing dimen-
sions of the line of which it is the increment (the law of the description of the loga-
rithmic spiral), and which curve either retains its position upon the axis, or moves
along it with a motion of translation in the direction of its length.”

This law is readily subjected to verification by admeasurement.

It is clear that, if it obtain, similar linear dimensions measured at similar points of
successive whorls, should be in geometric progression. Thus if the generating curve
(as in the Nautilus Pompilius) revolve about the axis without at the same time sliding
along it, and a section be made through the centre of the shell perpendicular to the
axis, then will the section be (if this law be true) a spiral curve, whose distances from
the axis, measured on the same radius vector, are in geometrical progression, and which
is therefore a logarithmic spiral.

In the more general case, in which the generating curve, as in the Twrbo scalaris,
slides forwards upon the axis as it revolves, increasing at the same time its linear di-
mensions according to the law of the logarithmic spiral, it is clear that the surfaces
of the successive whorls would interfere with one another, and that thus the uni-
formity of the spiral chamber would be destroyed, unless the motion of translation
(or the sliding motion) of the curve, by which the space allowed to each whorl upon
the axis is determined, were governed by some law corresponding to that which
governs the linear dimensions of the whorl; unless, in short, the spaces allowed to
the widths of successive whorls upon the axis varied in the same progression as the
widths themselves vary. A similar principle applies to the distances of the whorls
measured upon the surface of the shell in the same plane passing through the axis.
These distances are, in fact, in this case, similar linear dimensions of successive
whorls, and are therefore subject, according to the theory, to the law of the loga-
rithmic spiral, and like the distances of successive whorls of that spiral, on the same
radius vector, are in geometric progression.

Nautilus Pompilius.

These conclusions were directly verified by the following observations. A shell of
the Nautilus Pompilius was cut through the middle in a direction perpendicular to
its axis, and a tracing was taken of the section of its spiral surface; this tracing is
copied in fig. 6.

2z2
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It was made from the dark line which shows, on the section of the internal whorls
of the shell, the line of that pearly surface which the animal deposits as a covering to
its completed portion, as it advances in the construction of it. It is important to
make this observation, because as it extends one whorl of its shell over another, the
animal deposits continually upon the pearly surface of this last a new coating of
shell, and thickens it; and it is in the centre of this thickened section that is to be
found that section of the pearly surface, of which the edge of the external whorl is
a continuation, and from which this tracing was taken.

It will be found that the distance of any two of its whorls measured upon a radius
vector is one-third that of the two next whorls measured upon the same radius vector.
Thus

a b is one-third of b c,
d e is one-third of e f,
g h is one-third of 4 1,
L I is one-third of {m.

The curve is therefore a logarithmic spiral.

Turbo duplicatus.

From the apex of a large specimen of the Turbo duplicatus a line was drawn across
its whorls, and their widths were measured upon it in succession, beginning from the
last but one. The measurements were, as before, made with a fine pair of compasses
and a diagonal scale. The sight was assisted by a magnifying glass.

In a parallel column to the admeasurements are the terms of a geometric progres-
sion, whose first term is the width of the widest whorl measured, and whose common
ratio is 1°1804.

Widths of suc- | Terms of a geometrical
cessive whorls | progression, whose first
measured in term is the width of the
inches and parts | widest whorl, and whose
of an inch. common ratio is 11804,
1-31 1-31
1-12 1-1098
94 *94018
‘8 79651
67 67476
57 57164
*48 48427
*41 41026

Yet further to verify this remarkable coincidence of the widths of successive whorls
with the mathematical law of a geometric progression, the following property of such
a progression was determined: ““ that w representing the ratio of the sum of every even
number (m) of its terms to the sum of half that number of terms, the common ratio
(r) of the series is represented by the formula

2

r o (‘w — l);l-.”
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The following measurements were then made, beginning from the second and third
whorls respectively :

Width of six | Width of three .
whorls in inches, | whorls in inches. Ratio .
537 2:03 2:645
4:55 1-72 2:645

‘Width of four | Width of two .
whorls in inches, | whorls in inches. Ratio 4.
4-15 1-74 2385
352 1-47 2:394

By the two first admeasurements the formula gives
r = (1'645)% = 1°1804.
By the mean of the ratios deduced from the two second admeasurements it gives
r = (1'389)* = 1'1806.
It is scarcely possible to imagine a more accurate verification than is deduced from

these larger admeasurements, and we may with safety annex to the species 7urbo
duplicatus the characteristic number 1°18.

Buccinum subulatum.

A line was drawn from the apex of this shell across its whorls as in the last, and
the following admeasurements were similarly made.

Terms of a geometrical

Widths of successive
whorls by admeasure-
ment in inches,

progression, whose first
term is the width of the
widest whorl and ratio,

118,
114 1-14
1-:00 1:0089
‘9 *89279
79 *79008
7 *69919
62 61875
54 54757

In verification of the above the following larger admeasurements were made, begin-
ning vespectively from the last whorl, the last but one, and the last but two.

Width of six | Width of three .
whorls, whorls, Ratio w.
510 2:08 245
452 184 2-45
3:94 1:60 2:45
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2
From these admeasurements we have, by the formula » = (x — 1)™,

r = (1'45)% = 1°1318.

Turbo phasianus.

Three lines were drawn from the apex of this shell in different directions across its
whorls, and the following admeasurements were made upon them :

Terms of a geometrical
Widths of successive progression, whose first
whorls in inches by term is the width of the
admeasurement, widest whorl and ratio,
1+75.
First line, First line.
255 2:55
44 44
25 251
Second line. Second line,
98 98
56 56
*32 *323
Third line. Third line,
7 7
4 4
23 *228

The remarkable accordance of the measured with the calculated widths of the
whorls in this shell is to be attributed to the precision with which the line of sepa-
ration of the whorls is traced upon it. A great number of admeasurements were simi-
larly made upon other shells of the genera Trochus, Strombus and Murex; some of
them were cut through the axis longitudinally; and similar measurements were made
by drawing lines from the apex across the section. From all these the same result
was obtained.

Thus to each particular species of shell is annexed a characteristic number, being
the ratio of the geometric progression of similar successive linear dimensions of its
whorls ; from which number is deducible the constant angle of the particular loga-
rithmic spiral which is affected by that species of shell (see equation 26. in the fol-
lowing mathematical discussion). This number, or this angle, connected as it is
of necessity with the circumstances of the animal’s growth and the manner of its
existence, is determinable by actual admeasurement, and may be available for the
purposes of classification; it may suggest relations to which the observations of
naturalists may usefully be directed, and eventually become linked with character-
istic forms and modes of molluscous existence*.

* The whole race of land shells, for instance, will certainly (from the nature of the case) be distinguished
from the aquatic shells by a wide difference in the numbers characteristic of the species of the two groups.
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Why the Mollusks who inhabit turbinated and discoid shells should, in the pro-
gressive increase of their spiral dwellings, affect the particular law of the logarithmic
spiral, is easily to be understood. Providence has subjected the instinct which shapes
out each, to a rigid uniformity of operation.

This uniformity manifests itself in turbinated shells in respect to their axes. Now
the law of the logarithmic spiral, considered under its more general form of a curve
of double curvature, is the only one according to which the Mollusk can wind its
spiral dwelling in an uniform direction through the space round its axis, in respect to
that axis. Under this general form it may be geometrically defined as the curve
whose tangent retains always the same angular position in respect to its axis*, and
in respect to a line drawn from the point where it touches the curve perpendicular to
the axis; or in other words, which traverses the space round the axis always in the
same direction in respect to it.

A second property of the logarithmic spiral, equally referring itself to the uniformity
of the animal’s operations about the axis of its shell, is this; that it has everywhere the
same geometrical curvature, and is the only curve except the circle-§- which possesses
this property.

Certain physiological facts having reference to the growth of the Mollusk are de-
ducible from the geometrical description of its shell. If it be a land shell, its capacity
may be supposed (reasoning from that principle of economy which is an observable
law in Nature) to be precisely sufficient for the reception of the animal who built it.
If it be an aquatic shell, it serves the animal at once as a habitation and as a float;
enabling it to vary its buoyancy according as it leaves a greater or a less portion of
the narrower extremity of its chamber unoccupied, and thus to ascend or descend in
the water, at will. Now that its buoyancy, and therefore the facility of thus varying its
position, may remain the same at every period of its growth, it is necessary that the
increment of the capacity of its float should bear a constant ratio to the corresponding
increment of its body, a ratio which always assigns a greater amount to the increment
of the capacity of the shell than to the corresponding increments of the animal’s bulk.
Thus the chamber of the aguatic shell is increased, not only, as is the land shell, so
that it may contain the greater bulk of the Mollusk, but so that more and more of it
may be left unoccupied. Now the capacity of the shell and the dimensions of the
animal began together, and they increase thus in a constant ratio; the whole bulk of
the animal bears therefore a constant ratio, of greaterinequality, to the whole capacity
of the shell, in aguatic shells: in land shells, it is probably equal to it.

Now let the generating curve of a shell be conceived to describe, as it revolves
round its axis, a series of successive equal angles, represented each by A ®. Corre-
sponding to these equal increments of the angle of revolution of the generating

* So that moved parallel to itself until it intersected the axis, it would always intersectit at the same angle.
t The circle may, in fact, be considered a logarithmic spiral, the constant inclination of whose tangent to its
radius vector is a rightangle. Of all curves, this spiral, considered as thus including the circle, is the simplest.
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curve, will be certain increments of the capacity of the shell ; and it appears from the
following mathematical investigation of the properties of conchoidal surfaces (see -
equation 19.), that the increments of the capacity of the shell, thus taken, will bein a
constant ratio to the then existing whole capacities of the shell. The increment of
the animal’s bulk corresponding to each of these increments of the shell must then be
in a constant ratio to its then existing bulk ; that is, the animal’s growth correspond-
ing to a given increment, A O, in the angle described by the generating curve of iis
shell, is proportional always to its existing growth.

Let us now suppose that the physical living energies of the animal (those by which
it grows), at any time, are proportional to its then existing growth ; and therefore that
its growth in any increment of time is proportional to its growth up to that time (a
supposition which possesses an independent probability). From the conclusion be-
fore arrived at, and from this supposition, it follows that the growth of the animal
corresponding to a given increment, A O, in the angle of revolution of the generating
curve, and the growth corresponding to a given increment of time, are each propor-
tional to the animal’s whole then existing growth, and therefore to one another; and,
since they begin together, that the whole angle, ®, of revolution of the generating
curve of the shell, is proportional to the whole corresponding time of the animal’s
growth, and therefore that the whole number of whorls, and parts of whorls, is pro-
portional to its whole age: a conclusion which, like the supposition whence it is de-
duced, possesses an independent probability.

The separate probability of each of the two suppositions,  that the physical energies
of the Mollusk, as developed in its growth in a given increment of time, are propor-
tional to its whole then existing growth*, and that its age is always proportional to
the whole angle which, in the construction of the shell, it has then described round
its axis,” is greatly increased by the necessary relation which is here shown to obtain
between them; a relation, by reason of which, either supposition being made, the other
becomes a conclusion.

The form of the Mollusk being supposed to remain geometrically similar to itself,
the surface of its mantle, by which organ it deposits its shell, of necessity varies as
the square of its linear dimensions, whilst the whole bulk of the animal varies as the
cube of its linear dimensions. But, as its whole bulk, varies its active living and
growing energy, and therefore the amount of the deposition of its shell in a given
time; this last, then, varies as the cube of its linear dimensions; but the surface of
the depositing organ (the mantle) varies only as the square of the same linear dimen-
sions. Besides, then, the organic increase of the surface of the mantle, there must
be an increased functional activity of all its organs, varying as its simple linear di-
mensions.

This increased functional activity of the surface of the depositing organ, varying

* May not this law of the growth of a Mollusk have its analogy in other forms of animal life, and perhaps
in vegetable life ?
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simply as the linear dimensions of the animal or its shell, offers an analogy, and has
perhaps a relation, to the increase of the section of the shell, according to the same
law of its simple linear dimensions.

Subjoined to this paper is a mathematical discussion of the following geometrical
and mechanical elements of a conchoidal surface: its voLume, the dimensions of its
SURFACE, the CENTRE oF GraviTY of its contained solid, the CENTRE oF GraviTy of its
surface.

These elements are determined (the law of the logarithmic spiral being supposed)
by certain transcendental functions, having constant factors dependent for their
amount upon the statical moments and the moments of inertia of the generating
figures and of their areas.

The object proposed in the determination of these elements was their application
to a discussion of the hydraulic theory of shells; yet further, if possible, to develope
that wisdom of God which shaped them out and moulded them ; and especially in
reference to the particular value of the constant angle which the spiral of each spe-
cies of shell affects,—a value connected by a necessary relation with the economy of
the material of each, and with its stability, and the conditions of its buoyancy *.

The paper concludes with a discussion of the general EQuaTioNs to a conchoidal
surface in respect to systems of polar and of rectangular coordinates.

To determine the Volume of a Conchoidal Solid.

Suppose the generating curve to be a plane curve, and let it (first) retain its posmon
apon the axis as it revolves, varying its dimensions.

Let P C and Q C (fig. 3.) be two of its positions, inclined at the angle A ®, and in-
cluding between them the elementary solid P C Q.

Imagine the plane P C to have revolved about A z through the angle A® without
altering its dimensions, the solid generated by it would then, by the theorem of Gur-
piNus, be represented by M. A ©®, where M represents the statical moment of the
plane P C about the axis A z.

The elementary solid imagined to be in like manner generated by the revolution
of Q C through the angle A ©, will similarly be represented by (M 4+ A M) A @.

Now between these two imaginary solids is evidently the actual elementary solid
PC Q. Calling then V the volume of the solid to be determined, we have

MA®GK AV M+ AM)AO.
Or, considering M and V as functions of O, and expanding by TayLor’s theorem,

2 2
Mao<iy a0+ 90 - L | g cMao + 28 (a0 + &

* As illustrative of this remark, it may here be mentioned that the shell of the Nautilus Pompilius has, hy-
drostatically, an A-statical surface. If placed with any portion of its surface upon the water, it will imme-
diately turn over towards its smaller end, and rest only on its mouth, Those conversant with the theory of
floating bodies will recognise in this an interesting property.
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And this is true for all values of ®:

& 8
ol =

=M,
and

V:/'Md@. R O Y

If we imagine the plane C Q to slide along the axis A = (fig. 4.) without otherwise
altering its position, the elementary solid included between it and P C will retain the
same volume-as it had before; for the two planes P C and Q C may be divided into
the same number of similar elements, whose corresponding angles being joined, the
solid element included between them will be divided into as many pyramidal frusta,
the volume of each of which will remain unaltered by the supposed displacement of
C Q, since each such frustum may be imagined to be made up of two pyramids, the
base of each of which will remain the same after the displacement, and their bases
and vertices between the same parallels. Thus, then, the volume determined by the
above formula is that of the conchoidal solid under its most general form.

To determine the Area of a Conchoidal Surface.

Let U represent the whole area of the surface (fig. 3.), and A U the elementary area
intercepted between the positions P C and Q C of the generating curve, supposed to
revolve without otherwise altering its position on the axis.

Take A S to represent the element P Q of the curve described by the extremity P
of the revolving axis P C of the generating curve.

Imagine the generating curve to describe, without altering its dimensions, an angle

about the axis A 2, such that the circular arc, described on this supposition by the
AS

point P, may equal P Q or A'S. This angle will be represented by —--

The generating curve remaining always similar to itself, its statical moment about
A z is a function of ® or of R. Let it be represented by N, and considered a func-
tion of R. The elementary surface which the curve C P will generate, on the

supposition just made, will then be represented by élg N, according to the property

of GuLDINUS.

A surface similarly generated by C Q will in like manner be represented by

AS
———————R+AR(N+AN).

Now the dimensions of the actual element of the conchoidal surface lie between the
dimensions of these two imaginary surfaces.

This will be seen if we conceive any number of planes passing through the axis
C D, at right angles to A 2, to intersect all three of the surfaces spoken of. The
intercepted parts will be strips of the three surfaces, all of the same length, but of
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breadths, of which those of the surface described by P C will be the least, and those
described by Q C the greatest. S '

N N+AN
Considering, therefore, S, U, and N as functions of R, expanding by TavLor’s theorem
and dividing by A R

N dS a@?S N AR daU 22U AR N dS
Rantam R Te T4 < jptim 1ot & <giw

dS(1dN 1 1428
+ {d_R (NiR— ) +"§m}AR+ &e.
The second of these series having, for all values of A R, a value intermediate between

the other two, and the first terms of these other two being equal; the first terms of
the three series are equal.

and

U=/ R.gg-94R . . . . . . . . . (2)
which to adapt it for integration, (R being a function of ©®) may be put under the

form
N dS dR

The expression for the area of the surface thus determined, on the supposition that
the generating curve does not alter its position in respect to the axis otherwise than by
revolving round it, is the same with that of the surface which would be generated by a
curve which, as it revolved about the axis, slided along it, a different form being as-
signed to the function N. For if we imagine a conchoidal surface of this general
form (fig. 4.) to be intersected by planes, exceedingly near to one another, passing
through its axis, and at the same time to be traversed, as the surfaces of turbinated
shells usually are, by spiral lines parallel to the direction of the whorl, and which may
be understood to mark the paths of given points in the generating curve*; then each
element of the surface intercepted between two of the planes spoken of will, by these
spiral lines, be divided into a series of oblique parallelograms, two adjacent sides (con-
taining an acute angle) of each of which, may be considered as intersections with the
conchoidal surface of two planes, which intersect one another in an ordinate of the
generating curve; one of these planes is a tangent to one of the spiral lines spoken
of, and the other is the plane of the generating curve itself. Now let us suppose the
inclination of these planes to one another to be constant, as is always the case in
shells, and let it be represented by A. Let moreover the inclination, to its ordinate,

.d0O.

* This demonstration will be best understood by referring to the actual surface of a turbinated shell on
which the spiral lines are visible.

3442
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of the tangent to the generating curve be represented by ¢; and the inclination to
the same ordinate of the tangent to the spiral line by e. We have then given the in-
clination A of two planes to one another, and the inclinations ¢ and ¢ of two lines,
drawn in them respectively, to the intersection of these planes; whence by a well-
known formula of spherical trigonometry, if s represent the inclination of these lines
to one another,
COS ¢ = €O0S ¢ €O0S ¢ -+ sin ¢ sin o cos A.

Moreover, if the two adjacent sides of the parallelogram, being elements of the gene-
rating curve, and the spiral, be represented by A s and A S; then since their inclina-
tion is s, the area of the parallelogram is represented by AS. A ssins.. Now let us
suppose the generating curve to revolve, not altering its dimensions, but sliding along
the axis; then

w . . ¥ 0 n
o= .cos:=sin@cos A, and sins =4/ 1 4 sin? A tan®¢ . cos ¢;

also in this case
AS =y A®cosecA;

the area of the elementary parallelogram becomes then

- da* d
y\/cose02A+tan2¢.cos¢.As.A®, 01'y\/cosecz'A+d;2-~Jz—/s-AsA®;

so that the whole surface of the elementary slice intercepted between two planes
passing through the axis which are inclined to one another at an angle A ©, is on

this supposition,
( / > da®
A@fy \/cosec~A +c7—y—g -dy.

Suppose the integral in this expression to be represented by N, then N! will become
N (as it ought) in that particular case in which, the curve not sliding along the axis,

T
A becomes ="

Now we may reason in respect to N! precisely as before in respect to N, and we
shall obtain, by the same steps, the same expression for the surface in terms of N1,
as was then obtained in terms of N.

To find the Centre of Gravity of a Conchoidal Solid.

Suppose the solid included between P C and Q C (fig. 3.) to be divided into an in-
finite number of prismatic elements by planes perpendicular to P C, and perpendi-
cular and parallel to A z; and let m » (fig. 5.) represent one of these elements.

The voLuME of this element is represented by

noxXmns
or by

-—;n(mn-l—op)np.m
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or by

—é—(mn—}-op);{;

or by ‘
—;—(um+u‘o)._'n_171.sinA®.cosA®. e e e (8

The momMENTUM of the element about a plane passing through A sz, and perpendi-
cular to P C, (fig. 3.) is therefore represented by

—}l—(um +u0)2mgq.sin A®.cos>AO
or by
(the momentum of inertia of the plane m ¢) sin A © . cos? A O.

Assuming then O to be measured from the plane = y, the momentum of the element
m r about the plane % y is represented by

(momentum of inertia of elementary plane m ¢) sin ® sin A © cos? A O,
and the momentum of the same element about the plane z x is represented by
(momentum of inertia of elementary plane m ¢) cos ® sin A © cos? A O,

Hence if we imagine two solids to be generated, one by the revolution of P C, with-
out altering its dimensions, through the angle P C Q, and the other by the revolution
of Q C through the same angle; and if we take I to represent the momentum of
inertia of the plane P C; then will the momentum of the first solid about the plane x y,

be represented by
I sin O sin A ® cos2 A O,

and that of the second by
(142540 +....)sin (@ + A©)sinAOcos? A ©.

Now the momentum of the elementary solid P C Q evidently lies between those of
these elementary solids. Calling then the momentum of the whole solid, of which
P C Q is an element, M;, when estimated in respect to the plane % y, we have

Isin@cos2A®sinA®<cfil\(f)lA®+&c....<Isin®cosZA®sinA®—I—&c.

Ism@cos2AO< d@ sﬁf@—i—&c . <Isin ® cosz A ® + &ec.

And this is true for all values of A ©.

dM .
'.‘"E‘@l = I sin O.

Similarly calling M, the moment of the whole solid about the plane x
d M,

-8 =

M= fTsn®d®

= I cos O®
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M2=fIcos®d®

. . Isin®de

.. distance of centre of gravity from plane x y = Lffﬁ*dg@ s (4)
. . Icos ®

.. distance of centre of gravity from plane z x =‘Lf—c§7ls—a_g—@. . . (5)

The generating curve has here been supposed to revolve about the axis A x, other-
wise retaining its position upon it.

If we suppose P C to slide along the axis as it revolves (fig. 4.), the moment of the
elementary solid P C Q about A z, and therefore the moments M, and M, of the whole
solid about the planes z « and =z y will remain unaltered.

Another dimension will however now have become necessary to determine the
position of the centre of gravity; viz. its distance from a given point in the axis A z,
measured along that axis. ,

Let V (fig. 4.) be the point where the generating curve intersects the axis A z; ... by
equation (3.) the momentum of the element = » (fig. 5.) about a plane passing through
V perpendicular to the axis A z is represented by

%Vu(um-l—uo)ﬂ.siné&@.cos/.&@;

and assuming Vu = «, and « m (figs. 4 and- 5..) = y, the momentum of the whole ele-
mentary solid generated by the revolution of P C through the angle A ® is repre-
sented by

‘/:/:rydmdy.sinA@.cosA(@.

And representing f f xzydaxdy by L, and reasoning as before, the moment of the

whole solid about a plane perpendicular to A = passing through V is represented by

JLae.

And if AV = g, the distance of the centre of gravity from A measured along the axis
is represented by
Ld®
To find the Centre of Gravity of a Conchoidal Surface.
Imagine the generating curve to describe, without altering its dimensions, an angle

about the axis A z (fig. 3.), such that the circular arc described on this supposition
by the point P may equal the element P Q of the length of the curve or A S; this

ar AS
angle will be represented by—- Moreover, the moment of the elementary surface

thus generated about the plane z y will be represented by

Ssin05 ds,
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where y is any ordinate of the generating curve at right angles to the axis A 2, and s
is taken to represent the length of the generating curve. Assuming then f y2ds or

the moment of inertia of the perimeter of the curve to be represented by K, the mo-
ment of this imaginary surface about the plane x y is represented by

ESn@AS,
and, similarly, that about the plane x ais represented by
IR(-cos O AS.

Conceiving now a similar elementary surface to be generated by the curve Q C
without changing its dimensions, the two moments of that surface will be repre-
sented by

%—i—%—%—cos(@%—A@)AS
and
R Rsin (@ + A®)AS.

Moreover, the moment of the actual element of the conchoidal surface evidently lies
between the moments of these imaginary elements; as before, therefore, the whole
moments of the conchoidal surface about the planes z x and x 7, being represented
by N, and N,, |

AN, K . _dS
76 — RSO g
dN, K ds

a0 — R cos O i6e

Similarly, if N, represent the moment of the surface about a vertical plane perpendi-
cular to the axis A z, and passing through the point V; and if  be an abscissa to any
point of the generating curve measured along the axis from that point; and if H re-
present the integral £« y d s, taken in respect to the whole perimeter of the genera-
ting curve; then

N, _H dS

d® T R dO
The distances of the centre of gravity from the planes 2y, % «, and « y, are then re-
spectively

f%sin@ds v
fﬁds
. R
f-IScos(*DdS
R ;.
flﬂds
J R
and _I:I__ds

R
S R (9.)
AT
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To determine the Area of the Surface and the Centre of Gravity of a Turbinated Shell,
’ and the Volume and Centre of Gravity of its Contained Solid.

The generating curve of a turbinated shell remains similar to itself as it revolves ;
the statical moment of its perimeter varies therefore as the square, and the moment
of inertia of its perimeter as the cube, of any of its linear dimensions. In like manner
the statical moment of the area of its generating curve varies as the cube, and the
moment of inertia as the fourth power, of any of its linear dimensions.

If therefore C, C, C; C, C; C; represent certain constants determined by the geo-
metrical conditions of the generating curve,

N=CR K=C,R> H=C;R3
M=CR I =C,R* L=C;R%
Therefore the surface of the shell is represented by the integral

¢ /Rds. . . . . ... . ... (@0)

The co-ordinates of the centre of gravity of the surface are represented by
C,/R?sin®dS C,fR%*cos®dS }

C./RdS ’ ~ C,/RdS

and e
C,/R*dS
T+ R4S

And the volume of the contained solid is represented by

c,/RdO. . . . .. ... ... (12)

The co-ordinates of the centre of gravity of the contained solid are represented by

C,/R4sin®d0® Csz“cos@)d@‘[

C,/R?d® ’ ~C,/R°d®
R O &
Co/R1dO |
toswde |
Now it has been shown that in shells R varies according to the law of the loga-
rithmic spiral; so that
R — RO E(-)cotA
2
where R, is the value of R when ® = 0, and A is the constant angle which the ra-

dius vector of the spiral makes with its tangent, whether it be a plane curve or a curve
of double curvature ; whence it may readily be proved that

S
d——@:RCOSBCA. e e e e e e e e (14.)

Hence, substituting in the preceding formula, and integrating by the known rules,
we obtain, for the surface of the shell, the expression

1
FCiRZsecA(PeA—1); . . . . . . . (15)
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for the co-ordinates of the centre of gravity,

2C, R, .(3cotAsin®—cos®)539°°tA+1 (16.)
C,(tan A + 9cot A) 20cotA__ ] e )
2C, R, ‘(300tAcos®+sin®)53®°°tA—ScotA 17.)
C, (tan A + 9cot A) 20cot A__ e ’

(O s (IS 8 () (A2
Observing that 7, being taken to represent the initial length of the lesser diameter*
V T, of the generating curve, r, ® ot A will represent the length of that diameter after
the generating curve has revolved through the angle ®, and ry¢(®=2™ 4 will repre-
sent the width of the next preceding whorl of the shell, measured in the direction of
this diameter produced ; and the sum of the widths of all the preceding whorls, sup-
posed to be » in number, and measured in this direction, will be represented by

Enl 7 5(@ — 2n ) cot A.

Morcover, that the lesser diameter sliding along the axis, as the curve revolves
through any angle, a distance precisely equal to that by which the diameter increases,
it follows that the distance from the edge of the last or nth of the preceding whorls,
measured in this direction, to the origin is represented by

7 (E(®—2n #)cot A __ 1).

So that =, is represented by the formula

7 (e(O—anr)cotA_ 1) + znl 7o e(@—ﬁnw)cotA.

Integrating the formula (12.), having substituted for the value of R, we find for the
voLuME of the solid contained by the shell the expression

1 ’
5 CRAtan A(COA—1f . . L. L L L (19)

And integrating the formula (13.), the co-ordinates of the centre of gravity of the
contained solid are found to be

3C5 R, (4cot Asin® — cos @) 1OcotA 4 (20.)
C,(tan A + 16cot A) gBOcotA_ g T ’
3C; R, _(4cot A cos ® + sin ®) §1€C0tA__ 4ot A (21.)
C,(tan A + 16 cot A) BOcotA_ o ’

* When the whorls partially overlap one another, this diameter is to be understood to extend only across
that portion of the generating curve which actually gencrates the chamber of the shell, and which is not inter-
fered with by the preceding whorl. In these cases, then, it will only be a portion of what would be the shorter
diameter of the generating curve, if that curve were completed.

+ In the case in which the generating curve does not slide upon the axis as it revolves, 2, = 0.

1 In the case of turbinated shells R, may be considered extremely small with respect to any existing di-
mensions, and O exceedingly great, so that the formula 19. being taken to represent the whole capacity of the

shell, becomes in this case —;- C, R,? 3 @0t A and varies as Rs.
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— 2nxcotA

ro (E(O—an)cotA__ l) + 7, E(Q—Qw)cotA. (T) + 3 (C R) (4ecotA 1 ) (22)

10 determine the Polar Equation to the surface of a Turbinated Shell.

Let m (fig. 4.) be any point in the surface of the shell, and let the equation to the
curve VQ T, imagined to be in the act of generating the point m, be

K1 =f (Bs .2?1)
where B is an arbitrary constant representing a linear dimension of the curve, and
therefore varying according to the law of the logarithmic spiral, so that it may be
represented by the formula

B = BO Ee cot A,
where B is the initial value of B. Suppose the abscisse of the curve to be measured
along the axis VT from V, so that V « and v m are co-ordinates of m. Let A m =g,
mAz=P, Au=pcos® =12, +a2,um=r¢psin® =y,

wesin® = f(By®<4 pcos®—2) . . . . . . . . . . (23)
or substituting for =, its value

—2nwcotA
fSln(I) —f{B eecotA g(..OS(I) — 7y (2{8 2na)cotA 1) -7 (8- 2nw)cotA( ) } (24)

—2axcotA — )

From the above may readily be determined the equation to the surface of a shell

between the rectangular co-ordinates x, y, z. Observing that ® — 2 n 7 = tan™ 7’
and substituting, we obtain

(22 4yt ,
2nx 4 tan~? 2 ) cotA ( tan—! >~ cotA ) tan—1 - cot A —9 25,
=f{Bo e( JI) 8 — 1 \¢ Yy —_1/ — Tt Yy . (e nwcotA__ | ( )

g— 27cotA

The values of the constants C, C, C; C; C; C; are dependent upon the geometrical
form of the generating curve in each particular shell ; the constants R, 7, and B, on
its dimensions at the point where the generation of the shell is supposed to com-
mence.

The constant A is independent of the form and dimensions of the generating curve.
It depends simply upon the law of that particular logarithmic spiral which is affected
by that species of shell.

To determine the Constant Angle of the Spiral affected by any given Shell.
The common ratio of the geometrical progression according to which the widths
of successive whorls increase being determined by actual admeasurement and repre-
sented by A, we have the equation

EchotA =2

© A = tan-! _Q._"_)
.A = tan oax) « « + « « « « . (26)
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