Teorema 5: Método de variación de las constantes para determinar la solución propia.

- H) Dada $\overrightarrow{x'}(t) = A_s \overrightarrow{x}(t) + \overrightarrow{f}(t)$ A_s matriz cuadrada de tamaño n $\overrightarrow{f}(t)$ con funciones componentes continuas
- T) $\overrightarrow{X_p}(t) = e^{A_s t} \int e^{-A_s t} \overrightarrow{f}(t) dt$ es solución propia del sistema inhomogéneo.

Demostración:

Por las similitudes mencionadas anteriormente entre los sistemas de ecuaciones diferenciales lineales y las ecuaciones diferenciales lineales, no será casual que se utilice el método de variación de parámetros o de constantes para determinar $\overrightarrow{X_p}(t)$.

Se supondrá entonces que $\overrightarrow{X_p}(t) = e^{A_s t} \overrightarrow{u}(t)$; esto es, se varía el vector constante \overrightarrow{K} por la función vectorial $\overrightarrow{u}(t)$.

Derivando m. a m.:

$$\overrightarrow{X'_p} = A_s \underbrace{e^{A_s t} \overrightarrow{u}}_{\overrightarrow{X_p}(t)} + e^{A_s t} \overrightarrow{u}'$$

Así:

$$\overrightarrow{X'_p} = A_s \overrightarrow{X_p} + e^{A_s t} \overrightarrow{u}' \qquad (1)$$

Por otro lado, $\overrightarrow{X_p}$ es solución de $\overrightarrow{x'}(t) = A_s \ \overrightarrow{x}(t) + \overrightarrow{f}(t)$

Entonces:

$$\overrightarrow{X'}_p = A_s \overrightarrow{X}_p + \overrightarrow{f}(t)$$
 (2)

Utilizando las fórmulas (1) y (2): $e^{A_s t} \vec{u}' = \vec{f}(t)$.

Sabiendo que $e^{A_s t}$ es no singular, es posible despejar $\vec{u}' = e^{-A_s t} \vec{f}(t)$, y a partir de ésta calcular $\vec{u}(t) = \int e^{-A_s t} \vec{f}(t) dt$, siendo entonces la solución propia $\overrightarrow{X_p}(t) = e^{A_s t} \int e^{-A_s t} \vec{f}(t) dt$.

