Ejercicios de repaso sección 4.1
Evaluar las transformadas de Laplace.
- $\hspace{0.5cm} f(t)=\mathrm{2}t^4$
- $\hspace{0.5cm} f(t)=t^2+6t-3$
- $\hspace{0.5cm} f(t)=t^2-e^{-9t}+cosh{5}t$
- $\hspace{0.5cm} f(t)=(t+1)^3$
- $\hspace{0.5cm} f(t)=(e^t-e^{-t})^2$
- $\hspace{0.5cm} f(t)=(1+e^{2t})^2$
- $\hspace{0.5cm} f(t)=(2t-1)^3$
- $\hspace{0.5cm} f(t)=2sen2tcos{2}t$
- $\hspace{0.5cm} f(t)=e^tcosh{t}$
- $\hspace{0.5cm} f(t)=e^tsenht$
- $\hspace{0.5cm} f(t)=\left\{\begin{matrix}-1,&0\le t<1\\1,&t\geq1\\\end{matrix}\right.$
- $\hspace{0.5cm} f(t)=\left\{\begin{matrix}0,&0\le t<1\\t,&t\geq1\\\end{matrix}\right.$
- $\hspace{0.5cm} f(t)=\left\{\begin{matrix}0,&0\le t<1\\2t-2,&t\geq1\\\end{matrix}\right.$
- $\hspace{0.5cm} f(t)=\left\{\begin{matrix}sent,&0\le t<\pi\\0,&t\geq\pi\\\end{matrix}\right.$
- $\hspace{0.5cm} f(t)=\left\{\begin{matrix}2t+1,&0\le t<1\\0,&t\geq1\\\end{matrix}\right.$