Conference’17, July 2017, Washington, DC, USA Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, and Qing Li [168] Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2023. RECOMP: Improving retrieval- augmented LMs with context compression and selective augmentation. In The Twelfth International Conference on Learning Representations. [169] Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. 2019. BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis. In NAACL-HLT (1). Association for Computational Linguistics, 2324–2335. [170] Jitao Xu, Josep-Maria Crego, and Jean Senellart. 2020. Boosting neural machine translation with similar translations. In Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 1570– 1579. [171] Jing Xu, Arthur Szlam, and Jason Weston. 2022. Beyond Goldfish Memory: Long- Term Open-Domain Conversation. In ACL (1). Association for Computational Linguistics, 5180–5197. [172] Shicheng Xu, Liang Pang, Huawei Shen, Xueqi Cheng, and Tat-seng Chua. 2023. Search-in-the-chain: Towards the accurate, credible and traceable content gen- eration for complex knowledge-intensive tasks. arXiv preprint arXiv:2304.14732 (2023). [173] Haoyan Yang, Zhitao Li, Yong Zhang, Jianzong Wang, Ning Cheng, Ming Li, and Jing Xiao. 2023. PRCA: Fitting Black-Box Large Language Models for Retrieval Question Answering via Pluggable Reward-Driven Contextual Adapter. In EMNLP. Association for Computational Linguistics, 5364–5375. [174] Ling Yang, Zhilin Huang, Xiangxin Zhou, Minkai Xu, Wentao Zhang, Yu Wang, Xiawu Zheng, Wenming Yang, Ron O Dror, Shenda Hong, et al. 2023. Prompt- based 3d molecular diffusion models for structure-based drug design. (2023). [175] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language Models. In ICLR. OpenReview.net. [176] Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. 2023. Compositional exemplars for in-context learning. In International Conference on Machine Learning. PMLR, 39818–39833. [177] Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. 2023. Large Language Models are Versatile Decomposers: Decomposing Evidence and Questions for Table-based Reasoning. In SIGIR. ACM, 174–184. [178] Antonio Jimeno Yepes, Yao You, Jan Milczek, Sebastian Laverde, and Leah Li. 2024. Financial Report Chunking for Effective Retrieval Augmented Generation. arXiv preprint arXiv:2402.05131 (2024). [179] Dawei Yin, Yuening Hu, Jiliang Tang, Tim Daly, Mianwei Zhou, Hua Ouyang, Jianhui Chen, Changsung Kang, Hongbo Deng, Chikashi Nobata, et al. 2016. Ranking relevance in yahoo search. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 323–332. [180] Dani Yogatama, Cyprien de Masson d’Autume, and Lingpeng Kong. 2021. Adap- tive semiparametric language models. Transactions of the Association for Com- putational Linguistics 9 (2021), 362–373. [181] Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Berant. 2023. Making Retrieval-Augmented Language Models Robust to Irrelevant Context. In The Twelfth International Conference on Learning Representations. [182] Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal, Chenguang Zhu, Michael Zeng, and Meng Jiang. 2023. Generate rather than Retrieve: Large Language Models are Strong Context Generators. In ICLR. OpenReview.net. [183] Wenhao Yu, Zhihan Zhang, Zhenwen Liang, Meng Jiang, and Ashish Sabharwal. 2023. Improving language models via plug-and-play retrieval feedback. arXiv preprint arXiv:2305.14002 (2023). [184] Zichun Yu, Chenyan Xiong, Shi Yu, and Zhiyuan Liu. 2023. Augmentation- Adapted Retriever Improves Generalization of Language Models as Generic Plug- In. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2421–2436. [185] Daoguang Zan, Bei Chen, Zeqi Lin, Bei Guan, Yongji Wang, and Jian-Guang Lou. 2022. When Language Model Meets Private Library. In EMNLP (Findings). Association for Computational Linguistics, 277–288. [186] Shenglai Zeng, Jiankun Zhang, Pengfei He, Yue Xing, Yiding Liu, Han Xu, Jie Ren, Shuaiqiang Wang, Dawei Yin, Yi Chang, et al. 2024. The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented Generation (RAG). arXiv preprint arXiv:2402.16893 (2024). [187] Boyu Zhang, Hongyang Yang, Tianyu Zhou, Muhammad Ali Babar, and Xiao- Yang Liu. 2023. Enhancing financial sentiment analysis via retrieval augmented large language models. In Proceedings of the Fourth ACM International Conference on AI in Finance. 349–356. [188] Houyu Zhang, Zhenghao Liu, Chenyan Xiong, and Zhiyuan Liu. 2020. Grounded Conversation Generation as Guided Traverses in Commonsense Knowledge Graphs. In ACL. Association for Computational Linguistics, 2031–2043. [189] Jiahao Zhang, Rui Xue, Wenqi Fan, Xin Xu, Qing Li, Jian Pei, and Xiaorui Liu. 2024. Linear-Time Graph Neural Networks for Scalable Recommendations. arXiv preprint arXiv:2402.13973 (2024). [190] Yunxiang Zhang, Muhammad Khalifa, Lajanugen Logeswaran, Moontae Lee, Honglak Lee, and Lu Wang. 2023. Merging generated and retrieved knowledge for open-domain QA. arXiv preprint arXiv:2310.14393 (2023). [191] Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. 2023. Automatic Chain of Thought Prompting in Large Language Models. In ICLR. OpenReview.net. [192] Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng, Fangcheng Fu, Ling Yang, Wentao Zhang, and Bin Cui. 2024. Retrieval- Augmented Generation for AI-Generated Content: A Survey. arXiv preprint arXiv:2402.19473 (2024). [193] Ruochen Zhao, Hailin Chen, Weishi Wang, Fangkai Jiao, Xuan Long Do, Cheng- wei Qin, Bosheng Ding, Xiaobao Guo, Minzhi Li, Xingxuan Li, et al. 2023. Re- trieving multimodal information for augmented generation: A survey. arXiv preprint arXiv:2303.10868 (2023). [194] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey of large language models. arXiv preprint arXiv:2303.18223 (2023). [195] Zihuai Zhao, Wenqi Fan, Jiatong Li, Yunqing Liu, Xiaowei Mei, Yiqi Wang, Zhen Wen, Fei Wang, Xiangyu Zhao, Jiliang Tang, et al. 2024. Recommender systems in the era of large language models (llms). IEEE Transactions on Knowledge and Data Engineering (2024). [196] Zexuan Zhong, Tao Lei, and Danqi Chen. 2022. Training Language Models with Memory Augmentation. In 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022. [197] Shuyan Zhou, Uri Alon, Frank F Xu, Zhengbao Jiang, and Graham Neubig. 2022. Docprompting: Generating code by retrieving the docs. In The Eleventh International Conference on Learning Representations. [198] Yin Zhu, Zhiling Luo, and Gong Cheng. 2023. Furthest Reasoning with Plan Assessment: Stable Reasoning Path with Retrieval-Augmented Large Language Models. arXiv preprint arXiv:2309.12767 (2023). [199] Yinghao Zhu, Changyu Ren, Shiyun Xie, Shukai Liu, Hangyuan Ji, Zixiang Wang, Tao Sun, Long He, Zhoujun Li, Xi Zhu, et al. 2024. REALM: RAG-Driven Enhancement of Multimodal Electronic Health Records Analysis via Large Language Models. arXiv preprint arXiv:2402.07016 (2024). [200] Wei Zou, Runpeng Geng, Binghui Wang, and Jinyuan Jia. 2024. PoisonedRAG: Knowledge Poisoning Attacks to Retrieval-Augmented Generation of Large Language Models. arXiv preprint arXiv:2402.07867 (2024). 18