buscar Buscar en RED Descartes    

Mostrando artículos por etiqueta: lugar geométrico

Lugares geométricos: Trisectrices de Hipias y Nicomedes.

Continuamos con el estudio de los lugares geométricos y en esta entrada volvemos a desarrollar una aproximación al conocimiento genérico de los conocidos como "Trisectriz (Cuadratriz) de Hipias" y "Concoide (Trisectriz) de Nicomedes" que son las curvas resultantes del trabajo de estos sabios griegos para resolver el problema de la trisección de un ángulo.

Dentro del amplio grupo de cicloides y demás ll.gg. retomamos el análisis de los mencionados anteriormente por su especial interés debido a que cronológicamente estas curvas están, después de la circunferencia, entre las primeras que fueron creadas y descritas.

Para llevar a la práctica el estudio remitimos a la publicación en el Blog de dos escenas que los generan de forma interactiva. Se aconseja ver los detalles de estas utilidades, repitiendo la animación, hasta comprender el proceso de creación de los ll.gg. Son escenas basadas en la obra del profesor Pedro González Enríquez, trabajo que está en proceso de adaptación a las nuevas versiones del editor DescartesJS; no obstante, debido a su interés, las siguientes imágenes enlazan directamente con cada uno de los trabajos en su estado actual.

Estudio de la Trisectriz (Cuadratriz) de Hipias.

cuadratriz de hipias

Estudio de la Concoide de Nicomedes

Concoide de Nicomedes

Animamos a conocer las nuevas caractrísticas del editor DescartesJS. Exponemos otra vez el ejemplo sobre probabilidad publicado en la entrada anterior como ilustración de lo que se puede hacer, en muy pocos minutos, reutilizando la documentación que aporta.


Introducción al concepto de probabilidad

Como en anteriores ocasiones notamos que las utilidades mostradas son fácilmente adaptables y admiten las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos particulares de uso.

Las siguientes imágenes enlazan con pequeñas herramientas realizadas con el programa GeoGebra en las que se recrea el proceso de generación de la Concoide de Nicomedes, la trisectriz de Hipias y el uso por parte de Dinostrato de dicha trisectriz para hallar la cuadratura del círculo. Como ya se ha explicado esto se hace con el doble propósito de profundizar en el estudio de dichas curvas y ahondar en el conocimiento de ambas plataformas: GeoGebra y DescartesJS de forma paralela para lograr los objetivos señalados en entradas anteriores.

Estudio de la Trisectriz (Concoide) de Nicomedes.


hoja de trabajo de la Concoide

La siguiente imagen es un vínculo a la utilidad que muestra la generación del l.g. "Trisectriz de Hipias" y su uso como trisector de ángulos agudos.

Tiene especial interés la consideración de que según el procedimiento mostrado, cuando el segmento horizontal que se desplaza verticalmente y el que gira alrededor de O, centro del círculo, son ambos horizontales ( k = 0), el punto M intersección de los mismos (generador del l.g.) está indefinido. Esta situación no interfiere en nada a la trisección pues ahí el ángulo a trisecar vale 0 rad, pero si es transcendental considerar la distancia, en ese instante de horizontalidad, del hipotético punto M, deducido por la tendencia de la curva antes y después de ese instante, al centro del círculo.

Dinostrato, entre otros, consideró la tendencia de la curva y llegó a la conclusión de que cuando k → 0 entonces   d(O,M) → 2·r/π, hecho que le permitió cuadrar el círculo usando la trisectriz.

La herramienta enlazada comprueba lo anterior al hacer k = 0.

Estudio de la Trisectriz de Hipias.


trisectriz de Hipias

Proponemos al lector el análisis de las utilidades anteriores, su modificación y mejora con objeto de lograr un profundo conocimiento de ambas plataformas y así potenciar la inclusión del cálculo simbólico en escenas DescartesJS de forma eficaz.

Esta vez en la sección de vídeo hemos elegido uno que muestra la creación de la Concoide de Nicomedes paso a paso. Consideramos que su uso en centros bilingües es muy adecuado por la claridad de la exposición.

Concoide de Nicomedes

Continuando con la creación de la miscelánea "Las Espirales" sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.

En próximas entradas continuaremos el estudio de los lugares geométricos, su aplicación en las cuadraturas y analizando el subproyecto Misceláneas.

Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.

Bibliografia:


Ildefonso Fernández Trujillo. 2017

 

 

Publicado en Vídeos

Lugares geométricos: Epicicloides e Hipocicloides.

Continuamos con el estudio de los lugares geométricos y en esta entrada vamos a desarrollar una aproximación al conocimiento genérico de los conocidos como "Epicicloides" e "Hipocicloides" que son un tipo de Epi/Hipo Trocoides que a su vez son una clase de las Ruletas.

Dentro del amplio grupo de cicloides analizaremos los ll.gg. generados por un punto de una circunferencia, o dependiente de ella, cuando dicha circunferencia, a la que llamamos generatriz, gira sin deslizar, de forma tangencial, alrededor de otra circunferencia llamada directriz. Esto es, nuestro estudio se centra en uno de los tipos de las curvas planas cíclicas llamadas Ruletas.

Si la generatriz gira por el exterior de la directriz se genera una Epicicloide, que puede ser: ordinaria, epitrocoide acortada o epitrocoide alargada según la posición del punto generador respecto a la circunferencia generatriz de la que depende. Análogamente, si la generatriz gira por el interior de la directriz el l.g. generado es una hipocicloide que a su vez puede ser: ordinaria, hipotrocoide acortada o hipotrocoide alargada según veremos más adelante.

Para llevar a la práctica el estudio se han creado dos escenas: "epitrocoides.html" e "hipotrocoides.html" que se enlazan en la siguiente imagen que muestra como la utilidad "hipotrocoides.html" genera dos ll.gg. uno color rosa conocido como Deltoide (R/r=3) y el otro, de color azul, una hipotrocoide acortada. Esto es así porque se han considerado dos puntos generadores: uno en la circunferencia generatriz y otro, en este caso, interior a la misma. Ver detalles de la escena, dejando repetir la animación, o leer las instrucciones, hasta comprender el proceso de creación de los ll.gg.

cicloides

Para profundizar en el estudio de los lugares geométricos y en el de uso del editor DescartesJS, hemos elaborado, de forma muy esquemática, las pequeñas utilidades mencionadas anteriormente. Son escenas basadas en la obra del profesor Ricardo Sarandeses Fernández, trabajo que está en proceso de adaptación a las nuevas versiones del editor DescartesJS. A propósito del nuevo editor hemos utilizado, a modo de plantilla, los extraordinarios recursos que la documentación del mismo enlaza en la web de sus creadores. La cantidad de ejemplos-ejercicios ofrecidos hacen que el potencial didáctico y de reutilización de dicha documentación y los ejemplos que la acompañan sea digno de mención ya que con un mínimo esfuerzo, cualquiera de esos abundantes trabajos, puede ser adaptado y servir así de plantilla para un proyecto personal tal como muestran los anteriores y el siguiente enlace.


Introducción al concepto de probabilidad

En ambas escenas, de las dos relacionadas con los ll.gg., se ha puesto especial énfasis en el proceso de elaboración de las ecuaciones paramétricas del l.g. lo que se manifiesta al analizarlas. Por otra parte las dos utilidades pueden ser reducidas a una sola muy fácilmente, lo que dejamos como ejercicio.

Indicamos que:

  • Si se desea volver a ver la generación del l.g. o la realización de cualquier actividad desde el principio y con la escena despejada es suficiente con pulsar el botón inicio y efectuar las acciones adecuadas.
  • Los pulsadores R, r y a definen la forma de los ll.gg. generados. Estos lugares podrian representarse, una vez configurados, mediante sus ecuaciones paramétricas; aunque hemos elegido visualizar su creación dinámica mediante una animación.

Como en anteriores ocasiones notamos que la utilidad es fácilmente adaptable y admite las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos particulares de uso.

En los siguientes trabajos presentamos una recreación de las escenas anteriores realizadas con el programa GeoGebra con los propósitos de ahondar en el conocimiento de ambas plataformas: GeoGebra y DescartesJS de forma paralela para lograr los objetivos señalados en entradas anteriores.

La siguiente utilidad genera una amplia colección de epicicloides/epitrocoides según los valores que asignemos a los deslizadores. Conviene observar la animación para comprender la influencia que las asignaciones ejercen sobre los gráficos.


hoja de trabajo de las epicicloides

En la escena que enlaza la siguiente imagen se usa la ecuación de la curva para representarla una vez se conocen los valores que la definen.
Cuando el cociente R/r es un número natural la cicloide se completa en la primera vuelta de la generatriz, en cualquier otro caso es conveniente analizar el cociente anterior para preveer el comportamiento de la curva. La utilidad da un máximo de 10 vueltas, valor que puede modificarse para que se adapte dinámicamente a la situación y así hacer una aplicación más eficiente.
Al igual que en el caso de las epicicloides es conveniente analizar la animación.


hoja de trabajo de las hipocicloides

Proponemos al lector el análisis de las utilidades anteriores, su modificación y mejora con objeto de lograr un profundo conocimiento de ambas plataformas y así potenciar la inclusión del cálculo simbólico en escenas DescartesJS de forma eficaz.

En esta ocasión en la sección de vídeo hemos elegido de nuevo, debido a su indudable interés, dos de entre las muchas composiciones de Milton Donaire publicadas en YouTube.
La primera trata sobre el teorema de Menelao y la segunda sobre el teorema de Giovanni Ceva. El objetivo  es el de apreciar la influencia directa, e indirecta, que el conocimiento del triángulo y de las razones geométricas tiene en el tema que nos ocupa: "Los Lugares Geométricos".

Teorema de Menelao

Teorema de Giovanni Ceva

Continuando con la creación de la miscelánea "Las Espirales sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.

En próximas entradas continuaremos el estudio de los lugares geométricos y analizando el subproyecto Misceláneas.

Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.

Bibliografía:


Ildefonso Fernández Trujillo. 2017

 

 

Publicado en Vídeos

 

Lugares geométricos: Cicloide - Trisectriz de Ceva.

Continuamos con el estudio de los lugares geométricos y en esta entrada vamos a desarrollar una aproximación al conocimiento del l.g. conocido como "Trisectriz o cicloide de Tommaso Ceva". Este l.g. resuelve, a finales del siglo XVII, el problema clásico de la trisección de un ángulo pero no como pretendían los antiguos sabios griegos; aunque sí de una forma muy ingeniosa, extraordinariamente bella, dinámica y funcional.

La admiración que el método ideado por Tommaso Ceva despertó en muchos científicos y técnicos propició la creación de numerosos instrumentos mecánicos trisectores de ángulos también llamados Pantógrafos de Ceva la representación gráfica de uno de los cuales se muestra a continuación.

pantografo de ceva

Para profundizar en el estudio del lugar geométrico y en el de uso del editor DescartesJS, hemos elaborado, de forma muy esquemática, las pequeñas utilidades que se muestran a lo largo del capítulo. Son escenas basadas en la obra del profesor Pedro González Enríquez, trabajo que está en proceso de adaptación a las nuevas versiones del editor DescartesJS.

La primera de las escenas muestra la generación dinámica del l.g. conocido como Cicloide-Trisectriz de Ceva de la siguiente manera:

  • Establecido un sistema de referencia y considerada una distancia cualquiera, por ejemplo a = 1, se crean los siguientes elementos:
        • Con centro en el origen (0,0) y radio r = a se traza una circunferencia.
        • Se considera un punto cualquiera, A, de la circunferencia, por ejemplo el (a,0). Este punto es importante pues hará posible, cuando se desplace por la circunferencia, la creación del lugar geométrico.
        • Dibujar el punto B que depende de A y cumple dos condiciones: la primera es que debe estar en el eje horizontal y la segunda que su distancia al punto A sea igual a r en nuestro caso a. El punto de coordenadas (2·a·cos(t),0) donde t es el ángulo que la cuerda OA forma con la horizontal, cumple las condiciones. Este punto se mueve en el eje horizontal desde 2·a hasta -2·a y viceversa cada vez que el punto A da una vuelta a la circunferencia según podemos observar en la animación.
        • Con centro en el punto B y radio r = a se traza una circunferencia.
        • Trazar la cuerda que pasa por el origen de coordenadas y por el punto A. Esta cuerda cortará siempre a ambas circunferencias. Consideramos los puntos de corte A y P.
        • El punto P que, solidario con la cuerda, gira alrededor de B y se desplaza por el plano es el punto fundamental ya que genera, en su desplazamiento, el l.g. en estudio.
        • Cuando el punto A recorre la circunferencia, el punto P define la Cicloide-Trisectriz de Ceva
        • Para observar la generación del l.g. basta con pulsar el botón "anima/para" de la escena.
        • Conviene ver, en principio, la generación del l.g. con la curva oculta. También puede ser conveniente ocultar los ángulos pues mostrarlos, durante la primera vuelta del punto P a la circunferencia a la que pertenece, tiene como objetivo comprobar que el l.g. que se está generando es en realidad un trisector.
        • Los botones: "ángulos" y "curva" ocultan/muestran, al hacer clic sobre ellos, las gráficas de los ángulos y de la curva y los textos con los valores de los ángulos. La ecuación cartesiana del l.g. es:
          (x2 + y2)3 = a2·(3·x2-y2)2   


    lugar geométrico

    Para los lectores menos familiarizados con el proceso de creación de escenas DescartesJS indicamos que:

        • Si se desea volver a ver la generación del l.g. desde el principio y con la escena despejada es suficiente con pulsar el botón inicio y volver a activar la animación.
        • El botón velocidad ajusta la característica que su nombre indica de la animación.

    Como en anteriores ocasiones indicamos que la utilidad es fácilmente adaptable y admite las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos particulares de uso.

    La escena que exponemos a continuación muestra como el lazo mayor de la "Cicloide-Trisectriz de Tommaso Ceva" es en realidad un trisector de ángulos. Esto se evidencia de la siguiente forma:

        • En esta ocasión el punto A, que pertenece a la circunferencia de centro el origen y radio a, es un control gráfico que puede desplazarse por dicha circunferencia modificando el valor del pulsador ángulo.
        • El ángulo que el radio OA forma con la horizontal puede controlarse con el pulsador ángulo y su valor se muestra en la parte superior izquierda de la escena. Este es el ángulo que vamos a trisecar de la siguiente forma:
          • Por el punto A trazamos una semirrecta horizontal tal como muestra la escena.
          • En dicha semirrecta colocamos un control gráfico G.
          • Se desplaza el control gráfico G hasta que corta al lazo exterior en el punto adecuado (intersección de semirrecta y lazo). Cuando esto ocurre observamos que el segmento OG forma con la horizontal un ángulo que es la tercera parte del ángulo que forma el radio OA, mostrándose esta situación en la parte superior izquierda de la escena debajo del texto existente. Conviene que el desplazamiento se haga lentamente.
        • La determinación de la trisección puede ejecutarse de muy diferentes maneras. De hecho en la escena actual se ha contado con una cierta 'holgura', quizás excesiva, para facilitar la interactividad.


    Lazo Trisectriz de Ceva.

    En los siguientes trabajos presentamos una recreación de las escenas anteriores realizadas con el programa GeoGebra con los propósitos de ahondar en el conocimiento de ambas plataformas: GeoGebra y DescartesJS de forma paralela para lograr los objetivos señalados en entradas anteriores.

    La siguiente utilidad genera la trisectriz al desplazar el punto A por la circunferencia.


    creación del l.g.

    En la escena que enlaza la siguiente imagen se usa el lazo de la curva de Ceva como trisector de ángulos.


    Lazo trisector de Ceva

    Proponemos al lector el análisis de las utilidades anteriores, su modificación y mejora con objeto de lograr un profundo conocimiento de ambas plataformas y así potenciar la inclusión del cálculo simbólico en escenas DescartesJS de forma eficaz.

    Esta vez en la sección de vídeo hemos elegido dos composiciones de Milton Donaire publicadas en YouTube.
    La primera trata sobre el teorema de Menelao y la segunda sobre el teorema de Giovanni Ceva. El objetivo  es el de apreciar la influencia directa, e indirecta, que el conocimiento del triángulo y de las razones geométricas tiene en el tema que nos ocupa: "Los Lugares Geométricos".

    Teorema de Menelao

    Teorema de Giovanni Ceva

    Continuando con la creación de la miscelánea "Las Espirales sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.

    En próximas entradas continuaremos el estudio de los lugares geométricos y analizando el subproyecto Misceláneas.

    Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.

    Bibliografía:


    Ildefonso Fernández Trujillo. 2017

     

Publicado en Vídeos

Lugares geométricos: Caracol de Pascal II.

Continuamos con el estudio del l.g. "Caracol de Pascal". Este l.g. procede directamente de los lugares geométricos estudiados en la Grecia clásica: la Cisoide de Diocles, la Concoide de Nicomedes, la Espiral de Arquímedes, la Duplicatriz de Hipócrates, la Trisectriz de Hipias... que han sido analizados en entradas anteriores en este blog, de hecho, para ciertos valores de los parámetros que lo definen adopta la forma de la cardioide o la funcionalidad de la trisectriz.

De especial interés, para adentrarse en el contexto cultural que promueve el estudio de este lugar geométrico, es observar la producción pictórica del artista alemán Alberto Durero centrando la atención en los motivos geométricos, implícitos y explícitos, que muestra en la mayoría de sus obras.

Para profundizar en el estudio del lugar geométrico y en el de la creación de escenas con el editor DescartesJS, hemos elaborado, a modo de resumen, una escena que recopila parte de las mostradas en la entrada anterior y donde se hace una introducción al estudio de la ecuación cartesiana del caracol generado por el método de la curva plana de tipo ruleta. Esto puede observarse en la siguiente utilidad navegando por las definiciones y en concreto activando la "definición 4" y actuando sobre los controles y botones de la escena para ver las distintas ecuaciones, formas y maneras de generar el lugar geométrico caracol de Pascal.


definiciones.

Para los lectores menos familiarizados con el proceso de creación de escenas DescartesJS indicamos que:

  • Si se observan trazos o gráficas, generalmente de color rojo, no justificados, o se desea volver a ver la generación del l.g. es suficiente con pulsar el botón limpia, que quitará de la escena los trazos indeseados.
  • El botón zum ajusta el tamaño de la parte visible de la escena. Este botón al ser activado limpia, de forma predeterminada, la escena.
  • Los pulsadores a y b controlan la forma del caracol, el botón inicio reinicia la escena y el botón créditos muestra la autoría de la utilidad.

Como en anteriores ocasiones indicamos que la utilidad es fácilmente adaptable y admite las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos particulares de uso.

La escena que exponemos a continuación muestra como al ser a = b el caracol de Pascal puede usarse como trisector de ángulos gracias al lazo interior del mismo.

Hemos construido la escena de forma que un control gráfico, A, con el que podemos interactuar desplazándolo por el l.g. en el 1º y 2º cuadrante (notar la simetría) y así definir el ángulo que se desea trisecar con lo que, automáticamente, uniendo el punto A con los extremos horizontales del lazo interior, se obtiene la trisección.

La utilidad admite, como en casos anteriores, una amplia gama de modificaciones y generalizaciones, de fácil implementación, para adecuarse al propósito particular de uso.

Cuando el control A se encuentra sobre la parte superior del lazo se hace una proyección del mismo en la rama exterior del caracol y se determina la trisección del ángulo de la forma habitual.


Caracol como trisectriz.

En los siguientes trabajos presentamos una recreación de las escenas anteriores realizadas con el programa GeoGebra con el propósito de que, analizando los cambios en el proceso de creación de las utilidades se adquiera destreza en el uso de dichos procesos y el necesario conocimiento de ambas plataformas para discernir cuando implementar la interacción que señala la profesora Elena E. Álvarez Sáiz en sus extraordinarios e innovadores artículos en el blog, donde documenta y ejemplifica la manera de llevar a cabo la inclusión del cálculo simbólico mediante GeoGebra en las escenas DescartesJS.

Notar que en la siguiente utilidad hemos alterado el nombre y significado de algunos parámetros.


definiciones

En la siguiente escena se usa el caracol de Pascal como trisector de ángulos .

Debemos advertir que en esta ocasión también se ha cambiado el significado de los parámetros, aunque igual que en la ocasión anterior están perfectamente especificados los cambios en la información que se muestra


caracol trisector

Proponemos al lector el análisis de las utilidades anteriores, su modificación y mejora con objeto de lograr un profundo conocimiento de ambas plataformas y así potenciar la inclusión del cálculo simbólico en escenas DescartesJS de forma eficaz.

En la sección de vídeo, hemos elegido uno que trata sobre la identificación de la ecuación, en coordenadas Polares, del  caracol de Pascal y algunas de las definiciones que identifican este l.g. así como su construcción con el programa GeoGebra. El objetivo  es el de apreciar distintas formas de enfocar el tema que nos ocupa: "Los Lugares Geométricos".

Continuando con la creación de la miscelánea "Las Espirales" sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.

En próximas entradas continuaremos el estudio de los lugares geométricos y analizando el subproyecto Misceláneas.

Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.

Bibliografía:


Ildefonso Fernández Trujillo. 2016

 

Publicado en Vídeos

Lugares geométricos: Caracol de Pascal.

Continuando con el estudio de los lugares geométricos y sus utilidades se exponen a continuación una serie de escenas de introducción al estudio del l.g. conocido como Caracol de Pascal. Este l.g. está directamente relacionado con otros lugares geométricos estudiados en la Grecia clásica y analizados en entradas anteriores en este blog. De hecho, para ciertos valores de los parámetros que lo definen adopta la forma de la cardioide o la funcionalidad de la trisectriz.

Han sido muchos los científicos y artístas que, por diferentes motivos, han estudiado esta curva, entre ellos destacan: Étienne Pascal, su amigo Gilles Personne de Roberval (Roberval es una importante comarca en la región francesa de Picardía) y el artista y pintor alemán Alberto Durero. Cada uno de ellos consiguió sus diferentes objetivos probando así la versatilidad de estos lugares geométricos, característica esta que los define.

Las siguientes escenas tienen un doble propósito: servir de plantilla para un desarrollo más amplio relacionado con el tema y ser la introducción al estudio del l.g. de forma pausada y atendiendo a algún aspecto o consideración particular del mismo como la definición, generación o tipo de ecuación utilizada.

En primer lugar se exponen las gráficas de las curvas:

(x2+y2-2·a·x)2=b2·(x2+y2)   y su simétrica   (x2+y2+2·a·x)2=b2·(x2+y2)

en principio para el caso partícular de a=1 y b=2, esto es  b=2·a  donde el l.g. coincide con el de la cardioide.

Las ecuaciones anteriores derivan directamente de las definiciones siguientes:

Definición 1.

El Caracol de Pascal es el l.g. formado por los puntos de la podaria de una circunferencia respecto a un punto. (esta afirmación puede comprobarse activando la animación de la siguiente escena)

La utilidad, que evidentemente es una plantilla, es fácilmente adaptable y admite las modificaciones y/o ampliaciones que el usuario considere convenientes para su uso personal.


escena 1.

A continuación, y dedicado a los lectores interesados en el proceso de creación de escenas DescartesJS mostramos la escena anterior con algunas modificaciones.

Se evidencia que las escenas están carentes de estilo. La intención es que el usuario se documente, tal y como hemos descrito en artículos anteriores, e implemente los formatos y colores que considere más adecuados.

La escena es fácilmente adaptable y admite las modificaciones y/o ampliaciones que se consideren convenientes para los propósitos de uso.


escena 2.

En el siguiente trabajo presentamos otra versión de la escena anterior con el propósito de que, analizando los cambios respecto a la escena inicial, se facilite el procedimiento de generalizar el funcionamiento de esta.

Repetimos lo dicho anteriormente: la escena permite, con cierta facilidad, todas las modificaciones que se consideren necesarias.


escena 3.

En la tercera escena se añaden más cambios respecto de la anterior insistiendo en la importancia de elaborar  utilidades de carácter genérco; o bien como sugerencia de tipo de ejercicio de traslación y/o simetría en el plano.

En la cuarta escena, para generar el l.g. se ha usado la siguiente definición:

Definición 2.

El Caracol de Pascal es el l.g. definido por los puntos P y Q equidistantes del punto M, de la circunferencia c1, en la cuerda de la misma AM cuando M recorre dicha circunferencia.

Puede comprobarse la generación del l.g. activando la animación de la escna 4.


escena 4.

Proponemos al lector el análisis del significado de los parámetro a y b en esta última escena y de que, efectivamente, cuando ambos tienen el mismo valor el l.g. puede usarse como trisector de ángulos.

En la siguiente escena hemos obtenido el l.g. considerando el carácter de curva ruleta del Caracol de Pascal.

Definición 3.

El Caracol de Pascal es la curva plana de tipo ruleta formada por la trayectoria de un punto fijo, D, de una circunferencia que gira sobre si misma y alrededor de otra sin deslizar.

En esta escena, cuando h=3, se introduce el uso de la ecuación polar, ρ = a + b·cos(θ), del Caracol de Pascal.


escena 5

A continuación incluimos una pequeña utilidad que obtiene la podaria de una circunferencia.


Podaria

Un ejercicio interesante es la generalización del funcionamiento de la escena anterior para cualquier radio de la circunferencia y posición del punto.

En esta ocasión, en la sección de vídeo, hemos elegido uno que trata sobre la identificación de la curva en coordenadas Polares y estudio de las simetrías de un caracol con lazo. El objetivo de este vídeo es el de apreciar distintas formas de enfocar el tema que nos ocupa: "Los Lugares Geométricos".

Continuando con la creación de la miscelánea "Las Espirales" sugerimos completar su elaboración extrayendo el contenido relacionado con los lugares geométricos estudiados para añadir dichos contenidos a una nueva miscelánea que podemos nombrar como "Lugares Geométricos"; o bien continuar con la anterior incorporando los nuevos contenidos en el apartado adecuado.

En próximas entradas completaremos el estudio del Caracol de Pascal y abordaremos el de otros lugares geométricos.

Se ha incluido el Mesolabio de Eratóstenes con objeto de animar a su uso para adquirir destreza y poder usarlo, por ejemplo, en los temas de semejanza en el plano.

Relacionado con el tema del l.g. expuesto mostramos estas interesantes aplicaciones:

Geogebra. Uso de la ecuación polar para hacer la gráfica del Caracol de Pascal


Construcción del péndulo isocrono.


péndulo

En próximas entradas continuaremos con el paso a paso del estudio de los lugares geométricos y analizando el subproyecto Misceláneas.

Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.

Bibliografia:


Ildefonso Fernández Trujillo. 2016

 

Publicado en Vídeos

 

Proporcionalidad. Las Espirales XIV

Entre las innovaciones producidas en el ámbito de colaboración de la Red Educativa Digital Descartes destaca la continua aportación de nuevas unidades a los subproyectos: TELESECUNDARIA, GEOgráfica-GEOevaluación e iCartesiLibri.


Telesecundaria GEOgráfica

iCartesiLibri

Como muestra enlazamos la unidad sobre Como se mueven las cosas. Aceleración, del subproyecto TELESECUNDARIA,

telesecundaria

la GEOevaluación de SurAmérica,

GEOevaluación

y el libro interactivo Paletización y Empaque.

Paletización

Dentro de nuestro ámbito local destacan, entre otras, la permanente actualización del Proyecto ED@D cuyos materiales pueden enlazarse desde este espacio web mediante los botones MATEMÁTICAS y FÍSICA Y QUÍMICA y los contenidos del subproyecto Competencias en general y en particular los referidos como PISA con ordenador. De entre ellos enlazamos, con la siguiente imagen, el extraordinario trabajo sobre la generación de energia Central eléctrica azul

Central eléctrica

Continuando con el estudio de los l.g. y sus utilidades se expone a continuación una escena con el instrumento ideado por la escuela platónica para duplicar un cubo, esto es, dado un cubo de arista a y volumen V halla de forma mecánica y basandose en los razonamientos de Hipócrates, el segmento de longitud a'= a·21/3 que será la arista del cubo de volumen V' = 2·V.

La escena permite, con cierta facilidad, determinar el segmento OD pero si el usuario no está familiarizado con el uso del instrumento puede pulsar el botón de información, info, que muestra un breve texto con las indicaciones adecuadas y una demostración, que usa la construcción de Platón, o atribuida a la escuela platónica, del hecho de la duplicidad.

La utilidad es facilmente adaptable y admite las modificaciones y/o ampliaciones que el usuario considere convenientes para su uso personal.

En el siguiente trabajo presentamos el instrumento conocido como Mesolabio de Eratóstenes y la manera de encontrar, con su uso virtual, el segmento que sirva de arista al cubo que doble en volumen a uno inicial dado.

Repetimos lo dicho anteriormente: la escena permite, con cierta facilidad, determinar la arista del cubo con volumen doble a uno dado, pero si el usuario no está familiarizado con el uso del instrumento puede pulsar el botón de información, info, que muestra un breve texto con las indicaciones adecuadas y una demostración, que usa la semejanza de triángulos, del hecho de la duplicidad.

En esta ocasión, en la sección de vídeo, hemos elegido la tercera parte de los que se han mostrado en las últimas entradas. El objetivo de este vídeo es el de apreciar distintas formas de enfocar el tema que nos ocupa: "Las Espirales".

Continuando con la creación de la miscelánea "Las Espirales" hemos añadido al menú de tipos de espiral una nueva opción: "la espiral Compleja" tal y como anunciamos en artículos anteriores.
En esta ocasión hemos procedido de la siguiente manera:

  • Se ha creado la siguiente escena: Espiral compleja. El crecimiento de esta espiral, tal y como se ha construido, es extremadamente rápido debido al factor rn el lector puede modificar facilmente el comportamiento de la escena añadiendo más controles y/o modificando el rango de valores de los actuales.
    La demostración de las fórmulas (teoremas) de Moivre y Euler están disponibles en la wikipedia.
  • Inclusión de parte del código de la escena anterior en el de la miscelánea en proyecto.

La escena del proyecto puede verse a continuación:

Desde este enlace puede descargarse el proyecto de miscelánea con la espiral Compleja incluida.

Con el siguiente trabajo realizado con GeoGebra, tendremos la oportunidad de manejar, virtualmente, un mesolabio para hallar la arista de un cubo que tenga doble volumen que uno dado. Esto es, partiremos de esta situación

mesolabio

y trataremos de llegar a esta otra

mesolabio
solución

al manipular los controles gráficos G y K y conseguir el objetivo, se muestran las dos medias proporcionales, FR e IS, propuestas por Hipócrates, entre dos segmentos, MT y DA, de longitudes a y 2·a respectivamente, donde a es la longitud de la arista del cubo inicial. La recta determina el segmento que se usará de arista del cubo de volumen doble al primero. 
Con ayuda de los cursores y seleccionando alternativamente con el ratón los puntos G y K el ajuste puede ser bastante exacto tal y como muestra la imagen solución.

Se ha creado el recurso en la web de GeoGebra: 'Las espirales complejas.

En próximas entradas continuaremos con el paso a paso de la escena incluyendo nuevas espirales entre sus funcionalidades y analizando el subproyecto Misceláneas.

Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.

Bibliografia:

  • Documentación de Yuli Andrea Rodríguez Rodríguez y Benjamin R. Sarmiento Lugo
  • El problema de la Duplicación del cubo de Juana Contreras S. y Claudio del Pino O. Instituto de Matemática y Física. Universidad de Talca.
  • Una aproximación a la curva de transición Clotoide vista desde Mathematica de:
    Luís Blanch, Emilio Checa, Josefa Marín
    Universitat Politecnica de Valencia
    Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo., Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo., Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.
  • Problema de la duplicación del cubo de Juan Pablo Mora.
  • Consideraciones sobre los complejos y las espirales de:
    Miguel Ángel Morales Medina
  • Otros documentos buscados en Internet.



Ildefonso Fernández Trujillo

Publicado en Vídeos

Proporcionalidad. Las Espirales XII

Entre las innovaciones producidas en el ámbito de colaboración de la Red Educativa Digital Descartes destaca la continua aportación de nuevas unidades a los subproyectos: TELESECUNDARIA, GEOgráfica-GEOevaluación y PLANTILLAS.


Telesecundaria GEOgráfica

Telesecundaria

Como muestra enlazamos la unidad sobre Crecimiento Exponencial, del subproyecto TELESECUNDARIA,

telesecundaria

la GEOevaluación de los estados y ciudades de México.

GEOevaluación

y el ejemplo de: Asocia parejas de imágenes y textos (2).

Puzle

Dentro de nuestro ámbito local destacan, entre otras, la permanente actualización del Proyecto ED@D en particular los materiales de 2º y 4º LOMCE y las adaptaciones de los trabajos de Javier de la Escosura Caballero: "Geometría dinámica del trángulo" que enlazamos a continuación

geometria_dinamica

y el de Cuadrilateralia, donde se fomenta el estudio y conocimiento de las características matemáticas de los objetos mediante la manipulación virtual de los mismos y que enlazamos con la imagen siguiente.

geometria_dinamica

Continuando con el estudio de los l.g. y sus utilidades se expone a continuación una escena con el primero de los métodos para trisecar un ángulo con la Concoide de Nicomedes. El ángulo a trisecar es el formado por el eje polar y la recta que une el polo con el punto que se desplaza por la directriz.
El análisis de la escena y su modificación, fundamentalmente en la situación del tercio del ángulo mencionado anteriormente, nos lleva a descubrir interesantes características de la Concoide. También son interesantes las modificaciones funcionales que mejoren las prestaciones de la utilidad.
Mencionar, por último, que la escena es copia de la que en su día publicó el profesor Pedro González Enríquez en su trabajo sobre las trisectrices.

Entradas anteriores mostraban, paso a paso y exhaustivamente, escenas interactivas con la creación de lugares geométricos (l.g.) por uno y dos puntos y algunas de las utilidades de los l.g. generados por un punto, en la actual comenzamos a mostrar algunos de los usos de la Concoide.

En esta ocasión, en la sección de vídeo, hemos elegido, debido a su calidad e interés, el mismo que en la entrada anterior, que muestra con una belleza y claridad incuestionables la relación de la espiral con el origen del conocimiento tanto física como metafísicamente y son de especial relevancia la calidad de las fotografías y composiciones expuestas. El objetivo de este vídeo es el de apreciar distintas formas de enfocar el tema que nos ocupa: "Las Espirales.

Continuando con la creación de la miscelánea "Las Espirales" hemos añadido al menú de tipos de espiral una nueva opción: "la espiral de Lituus" tal y como anunciamos en artículos anteriores.
En esta ocasión hemos procedido de la siguiente manera:

  • Hemos creado la siguiente escena: Espiral de Lituus

  • Inclusión de parte del código de la escena anterior en el de la miscelánea en proyecto.

La escena del proyecto puede verse a continuación:

Desde este enlace puede descargarse el proyecto de miscelánea con la espiral de Lituus incluida.

También, relacionado con el tema de los lugares geométricos (l.g.) y la trisección del ángulo, hemos incluido los trabajos realizados con el programa GeoGebra donde se muestran dos metodos para trisecar un ángulo con la Concoide de Nicomedes.

Método 1.

Método 2.

En próximas entradas continuaremos con el paso a paso de la escena incluyendo nuevas espirales entre sus funcionalidades y analizando el subproyecto Misceláneas.

Animamos a los lectores a colaborar elaborando contenidos o aportando ideas y sugerencias.

Ildefonso Fernández Trujillo

 

Publicado en Vídeos

Proporcionalidad. Las Espirales XI

Entre las innovaciones producidas en el ámbito de colaboración de la Red Educativa Digital Descartes destaca la continua aportación de nuevas unidades a los subproyectos: TELESECUNDARIA, GEOgráfica-GEOevaluación y PLANTILLAS.


Telesecundaria GEOgráfica

Telesecundaria

Como muestra enlazamos la unidad sobre Ángulos en la circunferencia, del subproyecto TELESECUNDARIA,

telesecundaria

la GEOevaluación de Asia

GEOevaluación

y los ejemplos de Puzle de intercambio de imágenes tipo 2 donde Descartes realiza directamente el troceado en 4x4 de las imágenes, del subproyecto PLANTILLAS.

Puzle

Dentro de nuestro ámbito local destacan, entre otras, las Misceláneas sobre las espirales y los lugares geométricos, todas ellas de indudable valor en cuanto establecen un hito en el estudio de estos objetos matemáticos. Se muestran y/o enlazan a continuación: una escena prolegómeno del estudio del l.g. "Concoide de Nicomedes" para más adelante ver su uso en la trisección de un ángulo, una miscelánea, que es un estudio riguroso y completo sobre las espirales logarítmicas y una segunda que complementa a la anterior. La excelente documentación aportada por ambas es una extraordinaria introducción a estudios más complejos de estos objetos y a la creación de utilidades educativas, dinámicas e interactivas.

 


Misceláneas

Artículos anteriores mostraban, paso a paso y exhaustivamente, escenas interactivas con la creación de lugares geométricos (l.g.) por un punto, el actual muestra, según hemos visto, la creación de la Concoide de Nicomedes que es un l.g. definido por dos puntos, cuya posición depende del desplazamiento de un tercer punto por un eje. En próximas entradas se mostrará como trisecar un ángulo agudo con la Concoide.

En esta ocasión, en la sección de vídeo, hemos elegido uno que muestra con una belleza y claridad incuestionables la relación de la espiral con el origen del conocimiento tanto física como metafísicamente y son de especial relevancia la calidad de las fotografias y composiciones expuestas. El objetivo de este vídeo es el de apreciar distintas formas de enfocar el tema que nos ocupa: "Las Espirales.

Continuando con la creación de la miscelánea "Las Espirales" hemos añadido al menú de tipos de espiral una nueva opción: "la espiral Logarítmica" tal y como anunciamos en artículos anteriores.
En esta ocasión hemos procedido de la siguiente manera:

  • Hemos creado la siguiente escena: Espiral Logarítmica

  • Inclusión de parte del código de la escena anterior en el de la miscelánea en proyecto.

La escena del proyecto puede verse a continuación:

Desde este enlace puede descargarse el proyecto de miscelánea con la espiral Logarítmica incluida.

También, relacionado con el tema de los lugares geométricos (l.g.) y sus utilidades, hemos incluido el trabajo realizado con el programa GeoGebra donde se muestra la construcción de la Concoide de Nicomedes para, más tarde, usarla en la trisección de un ángulo.

En próximas entradas continuaremos con el paso a paso de la escena incluyendo nuevas espirales entre sus funcionalidades y analizando el subproyecto Misceláneas.

Animamos a los lectores a colaborar en el proyecto elaborando contenidos o aportando ideas y sugerencias.

Ildefonso Fernández Trujillo

 

Publicado en Vídeos

Proporcionalidad. Las Espirales IX

Entre las innovaciones producidas en el ámbito de colaboración de la Red Educativa Digital Descartes destaca el subproyecto TELESECUNDARIA.
En palabras del encargado de la presentación del subproyecto en el Blog, Ángel Cabezudo Bueno, "Telesecundaria es una modalidad de los estudios de educación secundaria en el Sistema Educativo de México dirigido a estudiantes adolescentes de 12 a 15 años que viven en comunidades dispersas que carecen de escuela de secundaria.
Se utilizan para ello los avances en tecnologías de la información y comunicación (TIC) como recurso para acercar esta formación a los jóvenes y puedan concluir su educación básica.
En este subproyecto de RED Descartes se han recogido objetos de la Telesecundaria desarrollando los correspondientes materiales con la herramienta Descartes. Las asociaciones de Colombia y España han sido las encargadas de preparar la adaptación a DescartesJS y en consecuencia todos podrán ser consultados en cualquier dispositivo con sistema operativo que admita un navegador compatible con HTML5." los primeros materiales pueden verse y descargarse siguiendo el enlace gráfico siguiente.

telesecundaria

Dentro de nuestro ámbito local queremos destacar, entre otros, los siguiente materiales:

    • Todos los creados para el subproyecto COMPETENCIAS. Debido a la creciente internacionalización de nuestro sistema educativo, progresiva integración en la comunidad europea, conviene que la manera de evaluar competencias en los ámbitos externos sea conocido con objeto de participar en igualdad de condiciones. Un acercamiento a estos procedimientos lo ofrecen los materiales del proyecto Competencias.


Competencas

  • La Miscelánea sobre la espiral de Arquímedes que sigue la corriente de mostrar los conceptos complicados, composición de movimientos, mediante la visualización del hecho de forma que es posible intervenir en la escena modificando los parámetros que la definen, con lo que la comprensión del concepto se facilita sobremanera, por lo tanto la miscelánea que se presenta es, por derecho propio, un objeto educativo lúdico e interactivo con un potencial formativo sobresaliente; no obstante en esta ocasión queremos enfocar el proceso de creación de la espiral desde el punto de vista de la definición de un lugar geométrico.


Misceláneas

La miscelánea anterior muestra, paso a paso, la creación de un lugar geométrico (l.g.) por un punto que se mueve linealmente en un segmento mientras este gira alrededor de uno de sus extremos. Existen otros muchos lugares geométricos, entre los clásicos y más conocidos destaca la Trisectriz de Hipias que junto con la espiral de Arquímedes se ha usado, además de para otras utilidades, para la trisección de cualquier ángulo. A la Trisectriz de Hipias también se la llama Cuadratriz de Dinóstrato debido a que este geómetra usó el l.g. para la cuadratura del círculo. La Trisectriz (o Cuadratriz) es el l.g. generado por el punto común a dos segmentos uno de los cuales gira alrededor de uno de sus extremos y el otro se desplaza horizontalmente según muestran las siguientes escenas:

  • La Trisectriz de Hipias que muestra, mediante una animación, la definición de la curva

  • La trisección de un ángulo mediante la Trisectriz de Hipias. También se basa en una animación, en la primera parte se dibuja la curva y a continuación se muestra y explica, de forma dinámica, la trisección de un ángulo. La animación puede detenerse/reanudarse en cualquier instante.

  • La cuadratura del círculo mediante la Cuadratriz de Dinóstrato (Primera Parte). Esta escena se basa en un pulsador que muestra, según se pulsa, la explicación del proceso para cuadrar el círculo. También tiene una animación que vuelve a construir la curva. La animación puede activarse/detenerse en cualquier instante.

Conviene analizar las escenas anteriores, reproducirlas y/o mejorarlas y ver la forma de integrarlas en la miscelánea sobre las espirales.

En próximas entradas en el Blog completaremos el estudio de uso de la Cuadratriz y veremos la manera de trisecar un ángulo y cuadrar el círculo con la espiral de Arquímedes.

En esta ocasión, en la sección de vídeo, hemos elegido uno muy particular que muestra la manera de dibujar la Trisectriz de Hipias (Cuadratriz de Dinóstrato) con ¿regla y compás? con objeto de apreciar diferentes formas de enfocar el tema que nos ocupa. Buscando en internet se pone de manifiesto el enorme interés que suscitan, aún hoy en día, los problemas clásicos de la Geometría Griega.

Continuando con la creación de la miscelánea "Las Espirales" hemos añadido al menú de tipos de espiral una nueva opción: "la espiral de Fermat" tal y como anunciamos en artículos anteriores.
En esta ocasión hemos procedido de la siguiente manera:

  • Hemos creado la siguiente escena: Espiral de Fermat

  • Inclusión del código de la escena anterior en el de la miscelánea en proyecto.

La escena del proyecto puede verse a continuación:

Y desde este enlace descargar el proyecto con la espiral de Fermat incluida.

También, relacionado con el tema de los lugares geométricos (l.g.) y sus utilidades hemos incluido dos trabajos, realizados con el programa GeoGebra, uno muestra el uso de la espiral de Arquímedes para la trisección de un ángulo y en el otro, enlazado en la imagen que sigue a la trisección, se lleva a cabo la cuadratura de un círculo de forma dinámica.


cuadratura

En próximas entradas continuaremos con el paso a paso de la escena incluyendo nuevas espirales entre sus funcionalidades y analizando el subproyecto Misceláneas.

Animamos a los lectores a colaborar en el proyecto elaborando contenidos o aportando ideas y sugerencias.

Bibliografía.- Para la realización de esta entrada y siguientes ha sido de gran ayuda la siguiente información:


Ildefonso Fernández Trujillo. Blog ReDescartes 2016

 

Publicado en Vídeos
Página 2 de 2

SiteLock

Módulo de Búsqueda

Palabras Clave

Título

Categoría

Etiqueta

Autor

Acceso

Últimos materiales de Matemáticas

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information