Valora este artículo
(25 votos)

Aprendemos a resolver problemas con Descartes es una iniciativa del Departamento de Matemáticas del IES Bajo Guadalquivir de Lebrija, realizada con alumnos y alumnas de 4º ESO durante el curso escolar 2015/2016, basada en la experiencia para el "Desarrollo de la comunicación audiovisual a través de las Matemáticas con Descartes" y llevaba a cabo anteriormente con el alumnado de 1º de Bachillerato de Ciencias e Ingeniería, con objeto de fomentar en nuestros alumnos y alumnas el aprendizaje de las técnicas necesarias del lenguaje cinematográfico y audiovisual, a la vez que proporcionarles una formación básica que les permita, de forma autónoma, generar y producir sus propios contenidos audiovisuales.

Con el lema “Resolvemos problemas con Descartes, abrimos un foro de suscripción forzosa en el aula virtual de Matemáticas-4º para coordinar la experiencia, dar las indicaciones, organizar los equipos, elegir los problemas, prestar asesoramiento y fomentar el trabajo en colaboración, aunque también se generaba debate en el día a día del aula física. 

Decir que, durante todo el curso, los alumnos y alumnas asistieron a clase con sus portátiles de la Escuela TIC 2.0 que les entregaron cuando se encontraban en 5º de Primaria, usando junto a la PDI el libro digital interactivo del Proyecto ED@D y los cuadernos de trabajo Descartes que incorpora cada unidad interactiva, estando en contacto permanente con el profesor desde el aula virtual y desde la red social Twitter.

1ª FASE: PROPUESTA DE PROBLEMAS Y DIFUSIÓN EN TWITTER

Cada equipo tuvo que seleccionar dos problemas de la unidad interactiva "Ecuaciones y sistemas", concretamente uno de primer grado y otro de segundo, que se encuentran en el menú ejercicios y que se denominan "Sistemas de ecuaciones lineales" y "Sistemas de segundo grado", respectivamente, y comunicarlo en el foro del aula virtual para conocimiento del profesor y del resto de equipos. Posteriormente, y una vez acordado con el profesor los dos problemas seleccionados para su resolución en lo que sería su "ópera prima", al menos en Matemáticas, tuvieron que diseñar una imagen alusiva al contenido de los problemas, incorporar sus enunciados y darle difusión por la red social Twitter con el hashtag del curso #MATES4ABAJO.

 2ª FASE : DOCUMENTACIÓN Y GUIÓN DE LA OBRA

Comienza la fase de investigación y documentación, así que damos las indicaciones desde el aula virtual, aportamos sugerencias, consejos y recomendamos espacios y recursos. Por ejemplo: 

  • Guía rápida para grabar en vídeo. ¡Muy bueno!
  • Necesitáis un guión de lo que váis a grabar y a decir, pudiendo alternar planos virtuales de lo que se visualiza en el ordenador, tableta o smartphone con planos reales de la ejecución técnica de los ejercicios, que podéis realizar en una pizarra, en un cuaderno o folio, con un software que lo permita, grabando en interior o en exterior y, por supuesto, todo lo que se os ocurra. Aquí es donde entra en juego vuestra creatividad e imaginación.
  • Recordad que publicaremos en internet el producto final, así que procurad la mejor calidad de imagen y audio posibles.
  • El lenguaje matemático será primordial para las explicaciones y la comunicación audiovisual, por eso me enviaréis el borrador del guión, a través de la tarea del aula virtual, para que yo pueda revisarlo.
  • No podéis usar ni imágenes ni música con derechos de autor. Para estos casos, os recomiendo:
  • En cualquier caso, es recomendable dedicar una página de créditos para citar en el vídeo la autoría y el lugar de procedencia de las imágenes y audios usados.
  • Debería aparecer, al menos, el logotipo del IES Bajo Guadalquivir, nuestro instituto.
  • Cuando tengáis todo preparado y ensayado, os aconsejo hacer algunas pruebas de grabación cortas para comprobar si obtenéis el resultado deseado y las calidades demandadas

Si tenéis alguna idea y no sabéis cómo llevarla a efecto, podéis consultar en este foro o por el servicio de mensajería de la Moodle.

¡Es el momento de la CREATIVIDAD E IMAGINACIÓN!

 3ª FASE : EVALUACIÓN

Para la evaluación relativa a los aspectos curriculares del producto final presentado por cada equipo, se ha utilizado la rúbrica que compartimos en este artículo, elaborada desde Rubistar, y que ya empleamos en la experiencia para el "Desarrollo de la comunicación audiovisual a través de las Matemáticas con Descartes". Con un clic sobre la imagen puede ampliarse para una correcta visualización.

 rubrica insertar joomla

Si visualizas y oyes el vídeo con detenimiento, sin duda, encontrarás leves errores de expresión escrita o verbal, tanto en el lenguaje ordinario como en el lenguaje matemático, lo que nos induce a dar una continuidad a la iniciativa y extrapolarla a otros cursos para ir consiguiendo nuestro objetivo paulatinamente. Además, la localización y análisis de errores es una de las mejores estrategias de aprendizaje. No obstante, quiero desde aquí felicitar a todos mis alumnos y alumnas de 4º A por sorprenderme con su creatividad e imaginación, por ser competentes para generar contenido multimedia con sus dispositivos móviles, sin que su profesor sepa ayudarles en este ámbito, por afrontar todos los retos que se han encontrado por el camino hasta conseguir el producto final y por permitirme descubrir y fomentar algunas de sus capacidades ocultas.

Muchas gracias también a sus familias por apoyar la iniciativa autorizando las grabaciones y su difusión por las redes sociales, lo que obviamente repercute en una mejora de la formación de sus hijos e hijas como ciudadanos y ciudadanas del s. XXI y en su preparación para la siguiente etapa educativa.

Valora este artículo
(20 votos)

En el proceso de enseñanza y aprendizaje de las Matemáticas, incluso en edades avanzadas, es aconsejable el uso de materiales manipulativos para que el alumnado aprenda haciendo, construyendo y “tocando las matemáticas”. Ahora bien, todos conocemos las dificultades añadidas para organizar y planificar sesiones de aula con grupos numerosos empleando herramientas poco frecuentes, así como el tiempo necesario para diseñar o localizar los recursos que faciliten su desarrollo. Pues bien, este articulo tiene por objeto difundir la experiencia realizada con mi alumnado y, a la vez, compartir los recursos para hacer más llevadera la labor planificadora docente.

Se trata de una actividad ideal para realizar en el aula, para lo que será suficiente con 2 ó 3 sesiones, una vez conocidos los conceptos de figuras semejantes, razón de semejanza y la relación entre sus áreas y volúmenes, obteniendo como producto final una maqueta de las Torres KIO de 9'1 cm de altura, aproximadamente, que podrán manipular, conocer todas sus vistas, hallar el factor de escala y calcular el área de la base y el área lateral de las torres Puerta de Europa y sus volúmenes reales.

 Maquetas de las Torres KIO

Comparto con todos los compañeros, compañeras, amigos y amigas el vídeo de la primera experiencia, desarrollada con un grupo de 2º curso del desaparecido Programa de Cualificación Profesional Inicial, hoy Formación Profesional Básica, con quien tuve la fortuna de trabajar y aprender todo lo que son capaces de conseguir y ofrecer. Una experiencia que he repetido en el curso académico recientemente finalizado con un grupo de alumnos y alumnas de 4º ESO.

Aunque podemos calificar de ingente la cantidad de recursos ofrecidos desde la RED Descartes, posiblemente sea el tratado en este artículo uno de los más desconocidos, por lo que pasaremos a comentar cómo pueden encontrarse y enlazar a los mismos para su descarga o visualización.

Finalmente, después del desarrollo de toda la experiencia, dedicamos un tiempo a visionar y reflexionar sobre la grandiosidad de este proyecto denominado Puerta de Europa y la importancia de la ciencia, tecnología, ingeniería y matemáticas, conocida por las siglas STEM, gracias al vídeo que os recomiendo.

 
 
 
Viernes, 04 Diciembre 2015 22:43

EDAD 3ºESO Ecuaciones de segundo grado

Escrito por
Valora este artículo
(5 votos)

Esta semana vamos a ver el contenido de 3ºESO de ecuaciones de segundo grado

el índice seguido ha sido el siguiente:

1.Expresiones algebraicas
   Identidad y ecuación  
   Solución de una ecuación

2.Ecuaciones de primer grado
   Definición
   Método de resolución
   Resolución de problemas

3.Ecuaciones de segundo grado  
   Definición. Tipos
   Resolución de ax²+bx=0
   Resolución de ax²+c=0
   Resolución de ax²+bx+c=0
   Suma y producto de las raíces
   Discriminante de una ecuación
   Ecuación (x-a)·(x-b)=0
   Resolución de problemas

Viernes, 25 Septiembre 2015 11:45

Miscelánea: Las Espirales.

Escrito por
Valora este artículo
(3 votos)

Proporcionalidad. Espirales Aritméticas

Afortunadamente continúan las innovaciones en las posibilidades operativas y de uso de los materiales y Escenas de la Red Descartes. Aconsejamos acudir a los foros y contenidos de la Documentación técnica de la herramienta de autoría DescartesJS para intentar estar al día de las mismas, fundamentalmente a estos, que llevan a la información sobre cómo comunicar las escenas con el HTML y viceversa, y las escenas entre si y a estos otros que ilustran la manera de integrar el cálculo simbólico en las escenas.

También queremos animar a colaborar con los compañeros que están trabajando en el proyecto ed@d en moodle. El material que se está elaborando puede suponer una mejora extraordinaria en la labor educativa con un aumento significativo en la cantidad y calidad de la información expuesta y en la comunicación alumno-alumno, profesor-alumno y viceversa.

En este artículo nos vamos a centrar en la creación de una miscelánea que con el título Las Espirales va a contener una serie de escenas donde se introducirá, estudiará y representará alguna de las siguientes espirales:  

Cada elemento de la lista anterior enlaza con una página que puede contener o enlazar a: la definición, la ecuación en polares, las ecuaciones paramétricas, la gráfica y otras características de cada espiral, por lo que la miscelánea que vamos a elaborar estará enfocada a mostrar el proceso de planificación y realización de dicha miscelánea teniendo en cuenta que los objetivos didácticos de cara al alumnado son: las aplicaciones de la proporcionalidad y el potencial de uso de las funciones trigonométricas elementales, logarítmicas y exponenciales.

Aprovecharemos este artículo, los siguientes y la miscelánea que elaboraremos, para la presentación de la espiral Cordobesa, particularización de las espirales gnomónicas y fruto de un largo y laborioso trabajo colaborativo, aún vigente, que nuestro compañero, Ángel Cabezudo Bueno, ha concretado, provisionalmente, con éxito.

No debe olvidarse que estamos estudiando una de las aplicaciones del concepto de Proporcionalidad siguiendo algunos de los materiales que están disponibles en el Proyecto Descartes y, eventualmente, algún otro contenido que por su indudable interés lo merezca.

LAS ESPIRALES ARITMÉTICAS

Al escenario donde va a desarrollarse la acción (E1) le hemos asignado unas dimensiones de 800x612 y dentro de este espacio general definiremos tres espacios rectangulares según muestra la siguiente imagen.

escenario

Los espacios Ei1 y Ei2 son, fundamentalmente, informativos aunque, eventualmente, pueden alojar algún elemento interactivo como un botón o un campo de texto. En el espacio Ep es donde se desarrollarán las acciones principales de la primera escena que está dedicada a la espiral Aritmética (de Arquímedes) y al grupo de espirales uniformes de 2, 3,...,n centros.

Comenzaremos trabajando de una forma peculiar, crearemos un solo espacio, el Ep, de dimensiones: 533x410 (conviene observar que 533 y 410 son, aproximadamente, el 67% de 800 y de 612 respectivamente) desarrollaremos todas las acciones de la primera escena que tienen lugar en este espacio con sus interrelaciones y, una vez finalizado este proceso, añadiremos los espacios Ei1 y Ei2, los dotaremos de contenido, y sincronizaremos la acción.

La base teórica de todo el trabajo para esta primera escena va a ser la observación de Arquímedes que originó la espiral que lleva su nombre:"Imaginaos una línea que gira con velocidad constante alrededor de un extremo, manteniéndose siempre en un mismo plano, y un punto que se mueve a lo largo de la línea con velocidad lineal constante: ese punto describirá una espiral"

Arquímedes

Creamos el espacio Ep de 533x410 y en él vamos a representar lo descrito en la definición de tres maneras diferentes con objeto de practicar con las funciones seno y coseno y el concepto de proporcionalidad.

  • Partiendo de dos segmentos horizontales superpuestos. Uno que gira a derechas y otro que gira a izquierdas.
  • Partiendo de dos segmentos horizontales unidos por el punto fijo que giran en el sentido opuesto a las agujas del reloj.
  • Partiendo de dos segmentos verticales superpuestos. Uno que gira a derechas y otro que gira a izquierdas.

Consideramos las dos opciones posibles de giro del segmento y algunas de las composiciones que seguramente son conocidas por todos pues son de uso habitual.
También, en esta primera escena, vamos a mostrar la construcción de las espirales uniformes de dos y tres centros lo que unido a las explicaciones informativas que se incluirán en su momento bastará para aprender a construir una espiral uniforme de cualquier número de centros. Esto hace que para mantener el carácter didáctico del código convenga añadir un nuevo espacio, que superpuesto al anterior se hará visible cuando el primero esté oculto.
Para conseguir lo expuesto necesitaremos definir algunos controles de distinto tipo, algún vector, varias funciones, diversos algoritmos de cálculo y bastantes gráficos.

Vamos a mostrar lo que queremos conseguir y luego veremos, paso a paso como lo hemos realizado.

El siguiente vídeo muestra como se ha realizado la escena anterior.

En próximas entradas continuaremos con el paso a paso de la escena, analizando el subproyecto Misceláneas, y las nuevas posibilidades que el código ofrece.

Respecto al trabajo de investigación sobre las espirales gnomónicas en general y sobre la Cordobesa, en particular, que se está desarrollando, queremos mostrar los siguientes avances y animar a aportar alguna ayuda en el proceso de generalización emprendido.

Arquímedes

La siguiente escena muestra el avance realizado respecto a las iniciales.Espirales. Proceso de generalización

Animamos a los lectores a colaborar en el proyecto elaborando contenidos o aportando ideas y sugerencias.

Ildefonso Fernández Trujillo

Página 4 de 16
SiteLock

Módulo de Búsqueda

Frase Clave

Título del artículo

Categoría

Etiqueta

Publicador

Ayuda

Acceso

Canal Youtube

Calculadora Descartes

Versión 3.1 con estadística bidimensional

ComparteCódigo para embeber

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information