Valora este artículo
(3 votos)
Los juegos del Proyecto AJDA, están realizados con la aplicación Descartes, que permite crear escenas animadas e interactivas de muy diverso tipo.  Una gran ventaja de Descartes es su editor de escenas, que permite crear las mismas a través de un panel de control basado en menús bastante intuitivos y sencillos de utilizar.



El editor de escenas se puede descargar para distintos sistemas en el siguiente enlace. Además desde el propio editor se pueden cargar las actualizaciones y mejoras que se van incorporando. Cuando el editor detecta una nueva actualización indica mediante un mensaje la posibilidad de proceder a realizarla.
 
En el proyecto AJDA se dedica un apartado específico al aprendizaje de creación de juegos y escenas interactivas con Descartes. En dicho espacio se encuentra un curso completo sobre creación de juegos y escenas, un espacio dedicado a ejemplos y un apartado con videotutoriales. 
Valora este artículo
(14 votos)

Nuestros niños y niñas se encuentran disfrutando del período vacacional de verano, con mucho tiempo para compartir con sus familias y amigos, así como para el descanso y ocio. No obstante, siempre es recomendable encontrar el momento adecuado para sugerirles una interesante lectura y realizar, en nuestra compañía o junto a sus hermanos y hermanas mayores, algunas actividades de las áreas básicas del conocimiento. Ahora bien, para ello, las familias requieren de una orientación y asesoramiento que pueden recibir por diferentes canales de comunicación.

Con este fin, la Red Educativa Digital Descartes, ofrece una amplia selección de recursos digitales interactivos a los que pueden accederse desde cualquier lugar y hora, en el campo o en la playa, con un simple ordenador personal, portátil, tableta o smartphone y conexión a la red de internet, aunque también es posible descargarse el objeto de aprendizaje para usarlo en local, es decir, sin conexión a internet.

Estos recursos están organizados y catalogados por etapa educativa y edad, como se aprecia en la imagen inferior, así , las familias podrán seleccionar, con un simple clic sobre la imagen correspondiente o sobre el texto que la acompaña a su derecha, los adecuados para sus hijos e hijas, encontrando la relación con los nombres de las actividades y una breve descripción de la misma.

No obstante lo anterior, cada familia, como mejor conocedora de las capacidades de los niños y niñas, podrá optar por realizar las actividades de diferente edad.

La LOMCE no contempla los tres ciclos de Primaria, sino seis cursos independientes. lo que no supone obstáculo alguno para que los niños y niñas disfruten con estos recursos de gran calidad, pues accediendo al ciclo en cuestión, según la edad, y seleccionando el recurso deseado puede verse con detalle a qué curso concreto corresponde.

Esperamos que esta aportación, completamente gratuita, de la RED Descartes sea de utilidad para el mayor número posible de familias y animamos a dejar comentarios con sus opiniones.

Aplicación de Juegos Didácticos en el Aula Juegos y puzzles GEOCOLOR Capitales del mundo GEODIVER GEOEVALUACIÓN INFANTIL - 3 -6 AÑOS PRIMER CICLO DE PRIMARIA - 6 - 8 AÑOS SEGUNDO CICLO DE PRIMARIA - 8 - 10 AÑOS TERCER CICLO DE PRIMARIA - 10 - 12 AÑOS PRIMER CICLO DE ESO - 12 - 14 AÑOS Image Map  

El mapeado de la imagen se ha realizado desde la nube con la herramienta Image-Maps.

 

Guardar

Guardar

Guardar

Valora este artículo
(6 votos)

Misceláneas: Probabilidad. Inferencia.

Geometría y Probabilidad.

En los diferentes subproyectos que conforman la organización no gubernamental RED Descartes hay profusión de contenidos relativos a la Estadística y la Probabilidad que prácticamente cubren las exigencias curriculares de Primaria, ESO y Bachillerato. La particularidad de estos contenidos es que son: dinámicos, interactivos, formativos y en algunos casos, además, evaluativos. Ya en la anterior entrada en este blog señalamos algunos de esos recursos y siguiendo en esa línea y teniendo en cuenta que nuestro objetivo es el análisis de los errores de tipo I y II en los contrastes (tests) de hipótesis hemos seleccionado los siguientes contenidos:

  • La Unidad Didáctica "El azar y la probabilidad." de la profesora Ángela Nuñez Castaín (2001) posteriormente adaptada a DescartesJS por ella misma y José R. Galo Sánchez (2017). La unidad es un primer acercamiento a los conceptos del azar y la probabilidad mediante ejemplos interactivos elementales ideales para conocer/recordar los fundamentos teóricos del estudio del azar.


    Carrera de coches controlada por dados.

  •  
  • Si ya se conocen los fundamentos básicos de la Estadística y la Probabilidad el libro digital "Estadística, Combinatoria y Probabilidad" de Juan Jesús Cañas Escamilla y José R. Galo Sánchez, es la siguiente fuente de donde extraer la consolidación teórica rigurosa de los principios elementales y la justificación de los procesos operativos relacionados con los cálculos probabilísticos además de las técnicas organizativas de la información numérica en tablas y gráficos. Todo ello de forma gradual y apoyado en multitud de escenas interactivas de alto nivel educativo.

    media
    Libro digital interactivo.

  • En tercer lugar enlazamos el extraordinario libro digital interactivo "Estadística, Probabilidad e Inferencia", también de los autores Juan Jesús Cañas Escamilla y José R. Galo Sánchez, que hace un completo recorrido por los conceptos relativos a: la Estadística Unidimensional, Bidimensional, la Combinatoria, la Probabilidad, las variables estadísticas discretas y continuas y sus respectivas distribuciones de probabilidad y termina con un espléndido y documentadísimo análisis de la teoría del muestreo probabilístico y la inferencia estadística, todo ello acompañado de una batería de ejemplos, escenas interactivas, vídeos relativos a los contenidos y enlaces que hacen que el nivel de profundización en el estudio de la materia quede en manos de la persona interesada. Un ejemplo de escena interactiva, de las muchas que contiene el libro, es el que mostramos a continuación que apoya los conceptos teóricos de la introducción al estudio de los Intervalos de Confianza.

También enlazamos la excelente unidad didáctica, dinámica e interactiva, creada con DescartesJS por la profesora Mª José García Cebrian (2001) y revisada y adaptada por ella misma (2017)   INFERENCIA ESTADÍSTICA

Escuela de Atenas
Unidades Didácticas.

El problema de la aguja de Buffon - Laplace

Desde la generalización del uso del astrágalo (taba) para dilucidar todo tipo de cuestiones relacionadas con la incertidumbre o sencillamente como elemento lúdico para ejercitar la habilidad mezclada con la suerte, la Geometría y el Azar comenzaron a ir de la mano. De hecho el gráfico de los cuerpos platónicos que mostramos en la cabecera de esta entrada es probablemente una de las mejores definiciones de equiprobabilidad que podamos ver. El hecho tangible de manipular cualquiera de estos cuerpos transmite una sensación de equilibrio, perfección y equidad, amén de otras, difícilmente igualable.

Los motivos por los que, primero el conde de Buffon y más tarde Pierre-Simón Laplace, conde del Imperio, atendieron este problema no están claros. El efecto inmediato si, a partir de entonces la utilidad del uso de la Geometría en cuestiones de probabilidad estaba comprobada así como el uso de métodos estadísticos y probabilísticos para aproximar valores de constantes geométricas.

Con el objetivo de rememorar el establecimiento formal de la relación entre la Estadística-Probabilidad con la Geometría y también por la idoneidad del experimento con la introducción al estudio de la Inferencia Estadística que estamos desarrollando se ha elaborado la miscelánea "Experimento: La Aguja de Buffon". En esta miscelánea se recrea dicho experimento con las siguientes particularidades:

  • La escena simula el lanzamiento de 2 a 30000 agujas (o el lanzamiento de una aguja de 2 a 30000 veces).
  • Cada lanzamiento de k agujas puede repetirse n veces así puede analizarse, en cada muestra, el comportamiento de los estadísticos estudiados, la influencia del tamaño de las muestras en el comportamiento de los estadísticos, el cumplimiento de  la ley de los grandes números y otros.
  • Si el número de lanzamientos es menor o igual a 500 se representa cada una de las agujas lanzadas; si el número de agujas es mayor se muestra únicamente el punto medio de cada aguja.
  • Con cada lanzamiento la escena expone un breve resumen de los resultados, así como el valor aproximado de π y la probabilidad de tocar línea en la muestra.
  • El botón Indicaciones explica los objetivos y funcionalidad de la miscelánea.
  • La escena posibilita que en pocos minutos puedan realizarse experimentos como el que muestra el siguiente documento.



Experimento de Buffon. Lanzamiento de agujas.

En esta ocasión, en la sección de vídeo, hemos elegido uno que muestra una clase sobre la estimación de la media poblacional mediante intervalos de confianza. Este vídeo es uno de los enlazados en el libro digital interactivo "Estadística, Probabilidad e Inferencia".


Acerca de los cuerpos platónicos.


Ildefonso Fernández Trujillo. 2018

Valora este artículo
(4 votos)


Los juegos del proyecto AJDA pueden utilizarse o descargarse desde la web del proyecto o desde el DVD del mismo. Otra opción es crear un enlace desde nuestra web o blog a un juego determinado.
 
Otra posibilidad consiste en embeber un juego en la propia web o blog. La forma de hacerlo es a través de la instrucción iframe, que tiene básicamente la siguiente estructura:
 
<iframe en="" height="”altura" o="" pixeles="" src="/descartescms/dirección de la página donde se encuentra el juego" width="anchura en pixeles o %"></iframe>
 
Vamos a poner un ejemplo. Queremos embeber en el blog el juego artificieros, en su versión sin preguntas, en una ventana que tenga una anchura del 100%  y una altura de 750 px. La dirección del juego en cuestión es: http://newton.proyectodescartes.org/juegosdidacticos/images/juegos/unzip-juegos/jug-artificieros/contenidos/artificieros-sin-preg.html
 
La instrucción quedaría por tanto de la siguiente forma: 
 
<iframe height="750" src="http://newton.proyectodescartes.org/juegosdidacticos/images/juegos/unzip-juegos/jug-artificieros/contenidos/artificieros-sin-preg.html" width="100%"></iframe>
 
El juego embebido quedaría de la siguiente forma:



Como puede apreciarse, el ancho del juego es superior al del blog y el juego no se ve completo en pantalla, teniendo que usarse las barras de desplazamiento.

Para evitar ésto, se puede hacer un "zoom" sobre el contenido del elemento iframe utilizando las instrucciones de estilo css, que se deben poner al principio del código del documento y que se indican a continuación:

<style>
    #wrap { width: 200%; height: 550px; padding: 0; overflow: hidden; }
    #frame { width: 1020px; height: 750px; border: 1px solid black; }
    #frame {
        -ms-zoom: 0.70;
        -moz-transform: scale(0.70);
        -moz-transform-origin: 0 0;
        -o-transform: scale(0.70);
        -o-transform-origin: 0 0;
        -webkit-transform: scale(0.70);
        -webkit-transform-origin: 0 0;
    }
</style>

El código del iframe debe de quedar de la siguiente forma:

<div id="wrap">
<iframe id="frame" src="http://newton.proyectodescartes.org/juegosdidacticos/images/juegos/unzip-juegos/jug-artificieros/contenidos/artificieros-sin-preg.html"></iframe>

El div "wrap", se pone para evitar que se quede espacio en blanco debajo del iframe y su altura (en el ejemplo 550 px), debe de ser la del tamaño del marco reducido.
En el css del #frame se debe indicar el tamaño real del juego y el el zoom o scale, debe indicarse el porcentaje de reducción que se quiere aplicar, en nuestro caso el 70 % (0.70).

El código iframe admite muchos atributos tales como: border, scrolling, sandbox, seamless, etc.
Página 2 de 42
SiteLock

Módulo de Búsqueda

Frase Clave

Título del artículo

Categoría

Etiqueta

Publicador

Ayuda

Acceso

Canal Youtube

Calculadora Descartes

Versión 3.1 con estadística bidimensional

ComparteCódigo para embeber

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information