Valora este artículo
(14 votos)

Proyecto Descartes estuvo invitado al programa Boulevard de Radio Euskadi en su emisión del día 25 de agosto, para tratar el tema de la radio ficción en la divulgación de personajes matemáticos.

Boulevard es un programa que reúne, desde las 6:00, información y análisis de la información de Euskadi y el mundo, mientras que a partir de las 10:00 el espacio se dedica a la actualidad más cercana y a los temas que nos interesan.

Radio Euskadi. Programa Boulevard del 25 agosto

En la imagen superior hay un enlace a la página del programa en su totalidad, mientras que compartimos el audio con la entrevista dedicada a la asociación Red Educativa Digital Descartes o Proyecto Descartes, agradeciendo a Radio Euskadi y al programa Boulevard su difusión y la posibilidad de acceder a su contenido.

Recordamos que "El personaje misterioso" es un programa de Radio Descartes conducido por Eva Perdiguero y Ángel Cabezudo con el objetivo de dar a conocer un poco más de cerca la parte humana de los personajes matemáticos famosos a lo largo de la historia. Concretamente, tras la entrevista del invitado, que no se desvela, el escuchante debería conocer su nombre o bien tomar los datos que se aportan en la dramatización y tomarse un tiempo para averiguarlo consultando en la múltiple documentación que hoy día se encuentra disponible, principalmente en Internet o en libros divulgativos de Historia de las Matemáticas o de Matemáticos célebres, pasando a responder en un comentario del blog de nuestro portal. A la semana siguiente, se publica un puzle creado con Descartes JS que incluye imágenes alusivas, alegóricas o de efemérides que descubren al personaje.

Hasta la fecha se han realizado un total de doce entrevistas ficticas a personajes matemáticos, que enlazamos junto a su intérprete:

  1. Personaje misterioso - 1, interpretado por Ángel Cabezudo Bueno
  2. Personaje misterioso - 2, interpretado por Eva Perdiguero Garzo
  3. Personaje misterioso - 3, interpretado por José Antonio Salgueiro González
  4. Personaje misterioso - 4, interpretado por Ricardo Alonso Liarte
  5. Personaje misterioso - 5, interpretado por Antonio Pérez Sanz
  6. Personaje misterioso - 6, interpretado por Marta Macho Stadler
  7. Personaje misterioso - 7, interpretado por Elena Vázquez Abal
  8. Personaje misterioso - 8, interpretado por José María Sorando Muzás
  9. Personaje misterioso - 9, interpretado por Montse Gelis Bosch
  10. Personaje misterioso - 10, interpretado por Xosé Eixo Blanco
  11. Personaje misterioso - 11, interpretado por Elena Ramírez Ezquerro
  12. Personaje misterioso - 12, interpretado por Bernat Ancochea Millet

Hay que recordar también que "El personaje misterioso" resultó finalista en la categoría de Mejor Iniciativa Educativa a los V Premios Asociación Podcast, entregados en Barcelona en 2014.

Por último, y como anunciamos al final de la entrevista del programa Boulevard de Radio Euskadi, añadir que esta iniciativa se ha extrapolado al entorno educativo de Secundaria, de manera que son ya alumnos y alumnas de 3º ESO los encargados de realizar entrevistas a personajes matemáticos, como iremos difundiendo en próximos artículos donde las divulgaremos.

Valora este artículo
(7 votos)

Ya puedes "pinear" los recursos digitales interactivos y seguir los tableros de RED Descartes en Pinterest, pudiendo acceder desde el enlace que te proporcionamos o, mejor aún, desde el menú de redes sociales que encontrarás en la zona superior derecha de nuestro portal.

  RED Descartes en las redes sociales

Si no eres usuario habitual de esta red social, te indicamos que debes estar registrado y con la sesión abierta en Pinterest para poder visitar los diferentes tableros que hemos creado, así como para recorrer la variedad de recursos que los componen, cuya descripción te informará sobre el proyecto de RED Descartes al que pertenecen y sobre su contenido u objetivos.

 

Si desconoces Pinterest, puedes tomar contacto rápidamente con el vídeo del canal TEC titulado "¿Qué es y cómo se usa Pinterest?

 
Si buscas un manual de uso de Pinterest, te recomendamos el ofrecido en el Espacio de Apoyo TIC del Área de Formación en Red del INTEF, donde también encontrarás algunas recomendaciones para su uso en la práctica docente y enlaces a perfiles sobre educación.

Guardar

Guardar

Guardar

Guardar

Guardar

Miércoles, 29 Junio 2016 06:38

Cuadrilateralia

Escrito por
Valora este artículo
(4 votos)

Cuadrilateralia es una aplicación informática de carácter didáctico que pretende aprovechar a tendencia natural de manipular objetos concretos para, a través de la visualización, la observación, la composición y descomposición, el diseño y la construcción virtual, descubrir y estudiar las propiedades de carácter matemático de los cuadriláteros. Sus actividades han sido programadas teniendo en cuenta los principios de interactividad, brevedad en los textos, aleatoriedad y corrección o evaluación automática.”

Ése es el resumen descriptivo que Javier de la Escosura Caballero y María Antolina Muñoz Huertas hacen del recurso educativo del que son autores y que desarrollaron en el año 2006 usando Descartes. Fueron premiados por el Ministerio de Educación de España con el segundo premio a materiales educativos convocado por el Instituto de Tecnologías Educativas en el año 2006. Es un contínuum del recurso “Geometría dinámica del triángulo” que divulgamos en este blog y que igualmente hemos procedido a adaptarlo a DescartesJS permitiendo así que pueda utilizarse tanto en ordenadores como en tabletas y smartphones.

Los contenidos curriculares de Cuadrilateralia han sido vertebrados en torno a nueve capítulos o ejes temáticos:

    • Definición, clasificación y obtención
    • Ángulos y lados
    • Diagonales y ejes de simetría
    • Áreas
    • Perímetros
    • Cuadraturas
    • El rectángulo áureo
    • Construcción de los paralelogramos
    • Construcción de trapecios y trapezoides

En la guía didáctica, los autores, nos indican que:

“Las actividades guiadas e interactivas tales como: estudiar definiciones, fórmulas y clasificaciones; analizar propiedades de los lados, ángulos y diagonales; deducir las fórmulas del área o la cuadratura de los cuadriláteros utilizando puzles; usar regla y compás para resolver problemas de construcción; calcular áreas y perímetros tomando las medidas necesarias para ello; y encontrar los ejes de simetría o descubrir, doblando papel, cuándo un rectángulo es áureo, etc., favorecen la motivación y la comprensión y solución de los problemas relacionados con el tema.”

Y nos manifiestan que:

“Hemos realizado esta aplicación pensando en los alumnos y en las alumnas. Contando esencialmente con su participación activa. Ellos van a ser los/las protagonistas que con la ayuda del profesor han de tratar de llevar a buen puerto las actividades propuestas.

Ojalá que esta tarea os resulte a todos tan interesante, divertida y apasionante como para nosotros ha sido su elaboración.”

Todo lo expuesto concuerda con lo reflejado en el recurso y ciertamente es un medio eficaz para el aprendizaje activo e interactivo de los cuadriláteros.

¡Os invitamos a comprobarlo!

Lunes, 20 Junio 2016 11:05

Geometría dinámica del triángulo

Escrito por
Valora este artículo
(5 votos)

Este artículo tiene como objetivo el difundir un recurso interactivo desarrollado por Javier de la Escosura Caballero en el año 2002, utilizando Descartes, y que obtuvo tres premios:

    1. Tercer premio a Materiales Educativos del Instituto de Tecnologías Educativas del Ministerio de Educación de España en el 2002
    2. Primer premio en el "First European Contest of Mathematics Teaching Actions" TeachMath Excellence 2002.
    3. Accésit en la "XVIII Convocatoria de Premios de Investigación Pedagógica y Experiencias Didácticas". Geometría dinámica del triángulo: Una experiencia en el área de Matemáticas.

Descartes acaba de alcanzar en este mes de junio de 2016 su mayoría de edad, dieciocho años. Al ir creciendo, progresivamente, ha ido confirmando y asentando su potencial como herramienta de autor multipropósito mediante la que el profesorado y los desarrolladores de recursos educativos pueden plasmar su experiencia de aula, y su creatividad, obteniendo materiales que catalizan el aprendizaje de un alumnado que, gracias a Internet, se ubica en cualquier punto o lugar de nuestro pequeña “Gaia”o “Pachamama”.

Y como ejemplo de ese potencial cartesiano, más bien de esta realidad, hemos adaptado a DescartesJS la unidad “Geometría dinámica del triángulo”. 

Una unidad didáctica que en la permanente voracidad informática y sólo por haberse desarrollado hace catorce años, quizás, alguien podría equivocadamente verse tentado a catalogarla como una antigualla —en esa línea, ¿cómo catalogaría a “Los Elementos de Euclides”?—, pero que mantiene inalterable su objetivo educativo promoviendo un encuadre meramente euclidiano, ubicado en la Geometría sintética. Con la adaptación a DescartesJS se logra que el aprendizaje se pueda alcanzar usando cualquier tipo de dispositivo, es decir, tanto ordenadores como tabletas o smartphones con cualquier sistema operativo. Se mantiene el diseño, los objetivos y contenidos del recurso original, pero se actualiza el soporte que pasa a ser compatible HTML5.

Las “nuevas” tecnologías —¡¿hasta cuándo seguiremos denominándolas nuevas?!— han permitido dinamizar la Geometría y ese es planteamiento que aborda Javier de la Escosura según lo describe en la introducción a esta unidad, donde aboga por potenciar la capacidad visual y constructiva del alumnado, dando igual importancia tanto al concepto como a su plasmación física. Y para ello, conjuga tanto el entorno virtual que le aporta Descartes (en el que se observa y aprende) como la manipulación de los objetos en papel al plantear proyectos de trabajo (aportando plantillas imprimibles que facilitan su realización) en los que el plegado del papel, la construcción de puzles y la utilización de regla y compás es algo intrínseco al aprendizaje.

Los contenidos, que como indica el título se centran en la geometría del triángulo, se desarrollan en cinco bloques:

    1. Ángulos. Mediante plegado se demuestra que la suma de los ángulos de un triángulo en el plano es un ángulo llano y también que un ángulo exterior es la suma de los otros dos interiores no adyacentes.
    2. Construcción. Dibujo con regla y compás de triángulos conocidos sus lados, un ángulo y los lados adyacentes y dos lados y el ángulo comprendido, pudiendo deducir cuando los datos aportados permiten la construcción y consecuentemente el descubrimiento de algunas propiedades del triángulo.
    3. Área. Se abordan tres construcciones que permiten deducir el área de un triángulo en base a la del rectángulo.
    4. Rectas y puntos notables. Análisis de las mediatrices, medianas, bisectrices y alturas.
    5. Triángulos rectángulos. Se aborda la demostración de Teorema de la altura, del cateto y de Pitágoras con puzles.

En esencia un completo aprendizaje del triángulo que se verá complementado con otro recurso, denominado “Cuadrilateralia”, que fue también premiado y que presentaremos en un próximo artículo en este blog. Y más adelante lo ampliaremos con “Poligonalia”.

SiteLock

Módulo de Búsqueda

Frase Clave

Título del artículo

Categoría

Etiqueta

Publicador

Ayuda

Acceso

Canal Youtube

Calculadora Descartes

Versión 3.1 con estadística bidimensional

ComparteCódigo para embeber

Utilizamos cookies para mejorar nuestro sitio web y su experiencia al usarlo. Las cookies utilizadas para el funcionamiento esencial de este sitio ya se han establecido. Para saber más sobre las cookies que utilizamos y cómo eliminarlas , consulte nuestra Política de Privacidad.

  Acepto las Cookies de este sitio.
EU Cookie Directive Module Information