Seno, coseno y tangente

Las definiciones de las razones trigonométricas se pueden extraer de un triángulo rectángulo, el cual consta de un ángulo de \(90°\) y dos ángulos agudos. Cada uno de estos ángulos agudos tiene las funciones de seno, coseno y tangente. En otras palabras, el seno, el coseno y la tangente de un ángulo agudo son razones de los lados del triángulo.

Como ya vimos en la página anterior, una vez que se haya fijado uno de los ángulos agudos en un triángulo rectángulo, la razón entre sus lados siempre será la misma, sin importar las dimensiones específicas de los lados de dicho triángulo. En otras palabras, los valores de las razones trigonométricas seno, coseno y tangente serán constantes en triángulos rectángulos que comparten los mismos ángulos. A continuación veremos cómo se obtienen estos valores en un triángulo rectángulo inscrito en una circunferencia de radio \(1\), es decir: un triángulo rectángulo cuya hipotenusa equivale a \(1\).

En el siguiente espacio interactivo podrás explorar los valores de las razones trigonométricas en un triángulo con una hipotenusa cuya longitud es \(1\). Elige una relación trigonométrica en el menú de la izquierda y haz clic en el botón 'Animar'. Puedes detener la animación haciendo clic nuevamente en el mismo botón. Fíjate bien en el valor inicial de cada razón trigonométrica y en los valores que adquiere en los distintos cuadrantes del plano cartesiano. Observa y analiza también la gráfica correspondiente.

Si observaste con atención, habrás notado lo siguiente: