

I.E.S.			
	FECH	IA: /	/

NOMBRE:

Cuerpos geométricos

Contenidos

- Poliedros regulares
 Definiciones
 Desarrollos
 Planos de simetría
 Poliedros duales
- Otros poliedros
 Prismas
 Pirámides
 Planos de simetría
 Poliedros semirregulares
- 3. Cuerpos de revolución Cilindros Conos Esferas Planos de simetría
- 4. La esfera terrestre Coordenadas geográficas Husos horarios
- 5. Mapas Proyecciones

Objetivos

- Distinguir las clases de cuerpos geométricos.
- Construirlos a partir de su desarrollo plano.
- Determinar sus planos de simetría.
- Calcular sus áreas y volúmenes.
- Localizar un punto sobre la Tierra.
- Calcular la hora en cada país.
- Cómo se hacen los distintos tipos de mapas y las ventajas e inconvenientes de cada uno de ellos.

Autor: Xosé Eixo Blanco

Bajo licencia
Creative Commons
Si no se indica lo contrario.

CUADERNO Nº 8

N	0	М	B	R	E	
---	---	---	---	---	---	--

Antes de empezar

Pulsa... Recuerda

para repasar algunos conceptos.

Se abre una ventana con una explicación teórica y dos escenas.

Lee el texto y utiliza las escenas para realizar los siguientes ejercicios.

EJERCICIO 1: Completa las frases siguientes.

Poliedros
Un poliedro es un cuerpo cerrado
Cada uno de ellos recibe el nombre de
Los lados de las caras son las del poliedro.
Los extremos de las aristas son los del poliedro.

EJERCICIO 2: En la primera escena elige uno a uno los poliedros, observa y cuenta cuántas caras, aristas y vértices tiene cada uno y completa con esos datos esta tabla.

	Caras	Aristas	Vértices	
	С	Α	V	A - V + 2
Cubo				
Prisma recto				
Pirámide				
Dodecaedro				

EJERCICIO 3: Completa la frase siguiente y la fórmula:

En todo poliedro simple (sin huecos) se cumple la relación de Euler:				
El número de caras de un poliedro (C) es igual				
·				

EJERCICIO 4: Completa las frases siguientes.

Cuerpos de revolución	
Un cuerpo de revolución es cualquier figura geométrica construida	

EJERCICIO 5: En la segunda escena elige uno a uno los cuerpos de revolución y observa cuál es en cada caso la figura que al girar alrededor del eje da lugar a cada uno de ellos. Completa:

Cuerpo de revolución	Figura que gira

Cuando acabes pulsa D para ir a la página siguiente.

I.E.S.						

/ /

CUADERNO Nº 8

NOMBRE:

1. Poliedros regulares

1.a. Definiciones

Lee en la pantalla la explicación teórica de este apartado y elige en la escena uno a uno los poliedros para ver sus características.

EJERCICIO 1: Completa las frases siguientes.

<u> </u>
Diremos que un poliedro es regular cuando se cumplen las siguientes condiciones:
Sus caras son
En cada vértice

EJERCICIO 2: Completa esta tabla con los nombres y características de los poliedros regulares (Nº de caras, tipo de polígono de las caras). Escribe también un ejemplo de una figura o compuesto químico cuya forma sea similar a cada uno de estos poliedros.

Nombre	Nº de caras	Polígono de las caras	Ejemplo

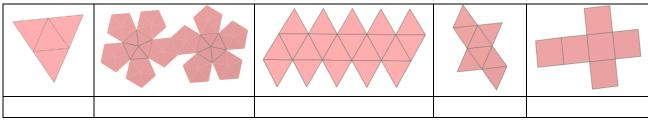
Los cinco poliedros regulares también se llaman	
(Si haces clic en ese otro nombre aparece un artículo de la wikinedia)	

Cuando acabes pulsa D para ir a la página siguiente.

1.b. Desarrollos

Lee en la pantalla la explicación teórica de este apartado y la escena para comprender mejor las explicaciones.

EJERCICIO 1: Completa las frases siguientes.


Se dice que un cuerpo geométrico es desarrollable cuando)
, , ,	
	i i

En la escena, selecciona el poliedro, coloca la plantilla con el ratón en la posición que quieras...

... y pulsa el botón

Animar

EJERCICIO 2: Escribe debajo de cada desarrollo el nombre del poliedro correspondiente.

Cuando acabes pulsa para ir a la página siguiente.

3°ESO A	∧atem	ráticas
	· · · · · · · · · · · · · · · · · · ·	ianta3

I.E.S		
	FECHA:	/ /

NOMBRE:

1.c. Planos de simetría

Lee en la pantalla la explicación teórica de este apartado y elige en la escena uno a uno los poliedros para ver sus planos de simetría.

¿Qué es un plano de simetría?	

EJERCICIO 2: Completa esta tabla con el número de planos de simetría de cada uno de los poliedros regulare e indica en cada caso por dónde pasan tal como se indica en la escena.

	Nº de planos de simetría	¿Por dónde pasan?
Tetraedro		\rightarrow
Cubo		\rightarrow
		→
Octaedro		→
		→
Dodecaedro		→
Icosaedro		→

1.d. Poliedros duales

Lee en la pantalla la explicación teórica de este apartado y utiliza la escena para comprender mejor lo que se explica.

EJERCICIO 1: Completa las frases siguientes.

Se dice que dos poliedros son duales si el	
Además ambos deben tener	•

EJERCICIO 2: Contesta las siguientes preguntas.

	RESPUESTAS
¿Qué puntos hay que unir para obtener el poliedro dual?	
¿Cuál es el poliedro dual de un octaedro?	
¿Cuál es el poliedro dual de un icosaedro?	
¿Cuál es el poliedro dual de un dodecaedro?	
¿Cuál es el poliedro dual de un tetraedro?	
¿Cuál es el poliedro dual de un hexaedro?	

Cuando acabes pulsa para ir a la página siguiente.

CUADERNO Nº 8

NOMBRE:

2. Otro poliedros

2.a. Prismas

Lee en la pantalla la explicación teórica de este apartado.

Utiliza la escena para ver las características de estos cuerpos geométricos.

Si aparece el botón | Desarrollo animado | (En los prismas regulares de 5 lados) Haciendo clic en el puedes acceder a otra página en la que verás con mayor detalle el desarrollo de los prismas

EJERCICIO 1: Completa las frases siguientes.

Un prisma es un	de	formadas por
cuyos lados se unen mediante _		

EJERCICIO 2: Contesta las siguientes preguntas.

	RESPUESTAS
¿Cuáles son las bases de un prisma?	
¿Cuáles son los lados de un prisma?	
¿Cómo son los lados de un prisma recto?	
¿Cómo son los lados de un prisma oblicuo?	
¿Cómo son las bases de un paralelepípedo?	
¿Cómo son las bases y los lados de un ortoedro?	
¿Cuándo se dice que un prisma es regular?	

→ Desarrollos, áreas y volúmenes de los prismas regulares

Se abre una escena en la que puedes elegir:

Desarrollos de prismas regulares
Área de un prisma
Volumen de un prisma

_

Elige: | Áreas de un prisma

E indica n^0 de lados = 5

Aparece un prisma regular pentagonal, su desarrollo y las fórmulas para calcular su área.

EJERCICIO: Completa.

Desarrollos, áreas y volúmenes de prismas regulares

Los prismas son cuerpos desarrollables. En particular, los prismas regulares tienen un desarrollo muy sencillo, formado por tantos rectángulos iguales como lados tenga y dos

polígonos regulares que forman las bases. Esto facilita el cálculo de sus áreas y volúmenes. 1. Desarrollo y área de un _ PRISMA Área de la base = AB = Área de un lado = Área lateral = AL = Área total

NOMBRE:

Elige: Volumen de un prisma E indica nº de lados = 5

FECHA:	/ /

5.	Volumen de un pr	isma pentagonal regular:
		Podemos considerar que está formado por una serie apilada de prismas del mismo tipo cuya altura es la unidad.
		El volumen de cada uno de estos pequeños prismas es igual al área de la base, A, luego el volumen del prisma grande será:
		grande sera:
	4	Siendo H la altura del prisma
		V =

Cuando acabes pulsa 🜔 para ir a la página siguiente.

2.b. Pirámides

Lee en la pantalla la explicación teórica de este apartado.

Utiliza la escena para ver las características de estos cuerpos geométricos.

Si aparece el botón Desarrollo animado (En las pirámides regulares de 5 lados) Te permite ver con mayor detalle el desarrollo de los prismas.

EJERCICIO 1: Completa las frases siguientes.

Una pirámide es un	con	formada por
sobre cuyos lados		que

EJERCICIO 2 : Contesta las siguientes preguntas.	RESPUESTAS
¿Cuál es la base de una pirámide?	
¿Cuáles son los lados de una pirámide?	
¿Cuál es el vértice de una pirámide?	
¿Cuál es la altura de una pirámide?	
¿Cuándo se dice que la pirámide es recta?	
¿Cuándo se dice que la pirámide es oblicua?	
¿Cómo son los lados de un prisma oblicuo?	
¿Cuándo se dice que la pirámide es regular?	
¿Qué poliedro ya estudiado es un caso particular	
de pirámide? ¿Cómo son sus lados?	

Pulsa...

→ Desarrollos, áreas y volúmenes de las pirámides regulares

Se abre una escena en la que puedes elegir:

Desarrollos de pirámides regulares			
Área de las pirámides regulares			
Volumen de las pirámides			

I.E.S. _____

FECHA:

CUADERNO Nº 8 NOMBRE:

Elige: Desarrollos de pirámides regulares

E indica nº de lados = 5

EJERCICIO: Completa el texto y dibuja el desarrollo en el siguiente recuadro.

Desarrollos, áreas y volúmenes de pirámides regulares

Las pirámides son________. En particular, las pirámides regulares tienen un desarrollo muy sencillo, formado por tantos ________ iguales como lados tenga y _______ que forma la base.

3. Desarrollo de una pirámide regular pentagonal:

Elige: Área de las pirámides regulares \blacksquare E indica nº de lados = 5

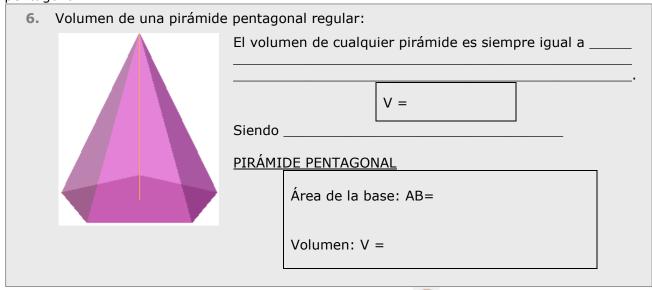
EJERCICIO: Completa las fórmulas para las áreas de un prisma pentagonal.

4. Área de una pirámide regular pentagonal:

PIRÁMIDE

a = AP =

Área de la base = AB =


Área de un lado = ÁREA TOTAL =

Área lateral = AL =

CUADERNO Nº 8	NOMBRE:	FECHA:	/ /

Elige: Volumen de las pirámides E indica nº de lados = 5

EJERCICIO: Completa el texto y las fórmulas para obtener el volumen de una pirámide pentagonal.

2.c. Planos de simetría

Lee en la pantalla la explicación teórica de este apartado y utiliza la escena para ver cada uno de los poliedros y sus planos de simetría.

Cuando acabes pulsa (para ir a la página siguiente.

EJERCICIO 1: Completa esta tabla con el número de planos de simetría e indica en cada caso por dónde pasan, tal como se indica en la escena

<u> </u>		
	Nº de planos de simetría	¿Por dónde pasan?
Prismas de n lados		→
Pirámide de n lados		→

Pulsa...

→ Planos de simetría en prismas y pirámides inclinados de base regular

Elige una de las opciones y cambia con las barras deslizadoras la inclinación. Observa si hay o no planos de simetría y en que situaciones pueden aparecer.

EJERCICIO 2: Contesta

¿En qué casos tienen plano de simetría los prismas inclinados y las pirámides inclinadas?

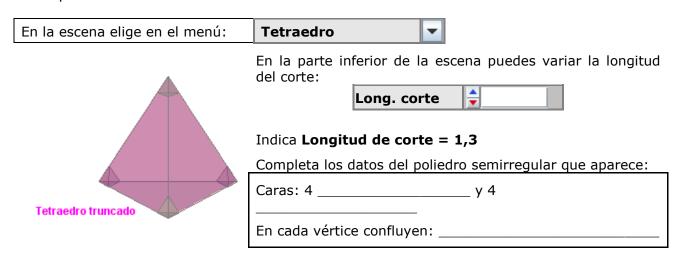
I.E.S.					

/ /

CUADERNO Nº 8

NOMBRE:

2.d. Poliedros semirregulares


Lee en la pantalla la explicación teórica de este apartado.

EJERCICIO 1: Completa las frases siguientes.

Poliedros semirregulares	
Un poliedro semirregular es un poliedro cuyas caras son	
de, de forma que en cada vértice	

Se pueden obtener, con cierta facilidad, poliedros semirregulares a partir de los poliedros regulares mediante la técnica del truncamiento.

Truncar un poliedro consiste en suprimir uno de sus vértices mediante la aplicación de un corte plano.

Indica Longitud de corte = 2

En este caso el poliedro semirregular que se obtiene es un ______.

En la escena elige en el menú:	Cubo	\blacksquare

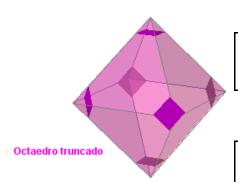
Indica Longitud de corte = 1,2

Completa los datos del poliedro semirregular que aparece:

Caras: _______ y _______

En cada vértice confluyen: ______

Indica Longitud de corte = 2


Completa los datos del poliedro semirregular que aparece:

Recibe el nombre de: _______

Recibe el nombre de:	
Caras:	У
En cada vértice confluyen:	

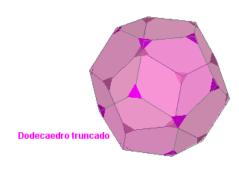
NOMBRE:

Indica Longitud de corte = 1,4

Completa los datos del poliedro semirregular que aparece:

Caras: ___ y ___ y ___ En cada vértice confluyen:

Indica Longitud de corte = 2


Completa los datos del poliedro semirregular que aparece:

Recibe el nombre de: Caras: ___ y ___ y ___ En cada vértice confluyen: _____

En la escena elige en el menú:

Dodecaedro

Indica Longitud de corte = 1,2

Completa los datos del poliedro semirregular que aparece:

Caras: ___ y ___ ____ En cada vértice confluyen: _____

Indica Longitud de corte = 2

Completa los datos del poliedro semirregular que aparece:

Caras: ___ y ___ y ___ En cada vértice confluyen: _____

En la escena elige en el menú:

Icosaedro

Completa los datos del poliedro semirregular que aparece:

Caras: ___ y ___ y ___ En cada vértice confluyen: _____

Indica Longitud de corte = 2

Completa los datos del poliedro semirregular que aparece:

Caras: ___ y ___ y ___ En cada vértice confluyen: _____

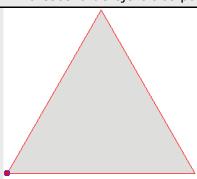
Pulsa...

Para ver algunas cuestiones relativas a estos temas

I.E.S.			

/ /

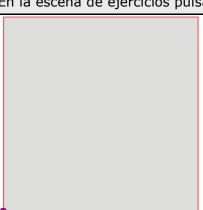
CUADERNO Nº 8


NOMBRE:

EJERCICIOS

6. Determinar la longitud de la arista de un tetraedro, de un octaedro o de un icosaedro que hay que truncar a partir de un vértice para obtener un poliedro semirregular.

En la escena de ejercicios pulsa


El triángulo representa la cara de un tetraedro. Moviendo el vértice se simula el truncamiento de los vértices.

Utiliza la escena para deducir por dónde debe producirse el corte para obtener un poliedro semirregular (de modo que aparezca un hexágono)

Determinar la longitud de la arista de un cubo que hay que truncar a partir de un vértice para obtener un poliedro semirregular.

En la escena de ejercicios pulsa

El cuadrado representa una cara de un cubo. Moviendo el vértice se simula el truncamiento de los vértices.

Utiliza la escena para deducir por dónde debe producirse el corte para obtener un poliedro semirregular (ha de obtenerse un octógono)

Analiza la dualidad de poliedros regulares cuando se truncan por la mitad de la arista.

En la escena de ejercicios pulsa

El cubo y el octaedro son duales. En ambos casos se obtiene un

El dodecaedro y el icosaedro son duales.

En ambos casos se obtiene un

Cuando acabes pulsa para ir a la página siguiente.

	escartes
1	

3°eso	Me	nte	m	áti	ca	s
ESU		410			·	•

I.E.S.			

/ /

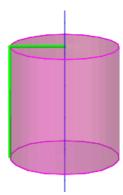
CUADERNO Nº 8

NOMBRE:

3. Cuerpos de revolución

3.a. Cilindros

Lee en la pantalla la explicación teórica de este apartado.


EJERCICIO 1: Completa las frases siguientes.

Un cilindro es un cuerpo genera	ndo por () al girar alrededor
de (). El cilindro es un cue	rpo

En la escena elige en el menú:

Elementos del cilindro

EJERCICIO 2: Escribe en el dibujo los nombres de los elementos y contesta las preguntas.

	RESPUESTAS
¿Cuántas caras tiene un cilindro?	
¿Cómo son las dos caras que son	
iguales?	
¿Cómo se llaman esas dos caras?	
¿Qué figura geométrica es la otra cara?	
¿Cuál es el radio de un cilindro?	
¿Cuál es la altura de un cilindro?	
¿Cuál es la base de la cara lateral?	
¿Cuál es la altura de la cara lateral?	

En la escena elige en el menú: Desarrollo del cilindro

Puedes pulsar el botón Desarrollo animado para acceder a otra página en la que

puedes ver con mayor detalle el desarrollo de lo cilindros

En la escena elige en el menú: Área del cilindro

EJERCICIO 3: Dibuja el desarrollo y escribe las fórmulas siguientes.

Área de la base:

 $A_B =$

Área lateral:

 $A_L =$

Área total:

 $A_T =$

En la escena elige en el menú: Volumen del cilindro

v = v =

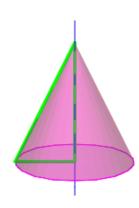
Pulsa 🚺 para ir a la página siguiente.

CUADERNO Nº 8

NOMBRE:

3.b. Conos

Lee en la pantalla la explicación teórica de este apartado.


EJERCICIO 1: Completa las frases siguientes.

Un **cono** es un cuerpo generado por ___ __ (______) al girar alrededor de _____ (____). El cono es un cuerpo ______

En la escena elige en el menú:

Elementos del cono

EJERCICIO 2: Escribe en el dibujo los nombres de los elementos y contesta las preguntas.

	RESPUESTAS
¿Cuántas caras tiene un cono?	
¿Cómo es la cara de la base?	
¿Qué figura geométrica es la cara lateral?	
El punto de apoyo de la generatriz sobre el	
eje es el	
¿Cuál es el radio de un cono?	
¿Cuál es la altura de un cono?	
¿Cuál es el radio del desarrollo de la cara?	
¿Cuál es la amplitud del desarrollo de la	
cara lateral?	

En la escena elige en el menú: Desarrollo del cono

EJERCICIO 3: Fíjate en el de<u>sarrollo del cono</u> y escribe las fórmulas siguien<u>tes.</u>

Relación entre "r", "g" y "h":

Base del desarrollo lateral

En la escena elige en el menú: **Área del cono**

EJERCICIO 4: Dibuja el desarrollo y escribe las fórmulas siguientes.

Área lateral:

 $A_L =$

Área de la base:

 $A_B =$

Área total:

 $A_T =$

En la escena elige en el menú:

Volumen del cono

V =

V =

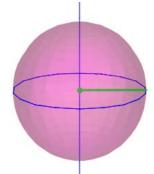
Pulsa 🚺 para ir a la página siguiente.

I.E.S.		

/ /

CUADERNO Nº 8

NOMBRE:


3.c. Esferas

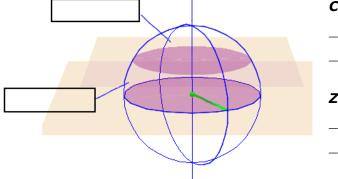
EJERCICIO 1: Lee a explicación teórica de este apartado y completa la frase siguiente.

Un **cono** es un cuerpo generado por ______ al girar alrededor de _____

En la escena aparece el apartado | Construcción de la esfera

EJERCICIO 2: Escribe en el dibujo los nombres de los elementos y completa las frases:

El *radio* de una esfera es el mismo que _____ y coincide con la distancia ______

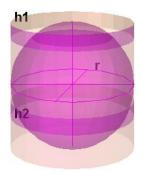

Esta propiedad caracteriza a la esfera:

Las esferas no son desarrollables. Por ese motivo la elaboración de mapas es un problema importante. Analizaremos este problema con más detalle en el último capítulo.

En la escena elige el apartado

Partes de una esfera

EJERCICIO 3: Escribe en el dibujo los nombres de los elementos y escribe las definiciones:


Casquete esférico:

Zona esférica:

En la escena elige el apartado

Área de una esfera

EJERCICIO 4: Escribe en el dibujo los nombres de los elementos y escribe las definiciones:

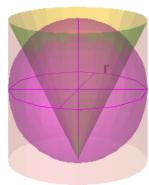
El área de una esfera de radio r es igual _____

Área de la esfera: A =

Área del casquete: $A_c =$

Área de la zona: $A_z =$

I.E.S.			

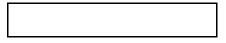

NOMBRE:

FECHA:	/ /

En la escena elige el apartado Volumen de una esfera

EJERCICIO 5: Escribe en el dibujo los nombres de los elementos y escribe las definiciones:

Volumen de la esfera: V_e =

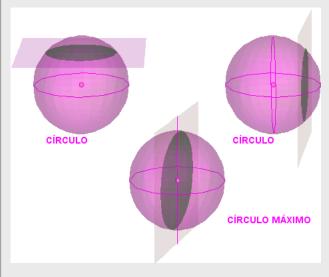


El volumen del cilindro circunscrito es: V_{ci} =

El volumen de la esfera equivale a _____

Como el volumen de un cono del mismo radio y altura es _____

El volumen de una zona esférica es igual ___


Pulsa...

→ Círculos sobre una esfera

Círculos en la esfera

Cuando un plano corta a una esfera la intersección de ambas figuras produce siempre un círculo. Si ese círculo contiene al centro de la esfera se dice que es un CÍRCULO MÁXIMO.

Puedes mover la imagen para verla desde otra perspectiva.

También puedes modificar el control Pos para variar la posición del plano que corta a las dos primeras esferas.

Completa:

Las circunferencias que limitan a los círculos máximos tienen la propiedad de que:

Pulsa para ir a la página siguiente.

I.E.S				
	FECHA:	/	/	

NOMBRE:

3.d. Planos de simetría

Lee en la pantalla la explicación teórica de este apartado y utiliza la escena para ver cada uno de los cuerpos de revolución y sus planos de simetría.

EJERCICIO 1: Completa esta tabla con el número de planos de simetría e indica en cada caso por dónde pasan, tal como se indica en la escena.

	Nº de planos de simetría	¿Por dónde pasan?
Cilindro		
Cono		
Esfera		

Pulsa...

→ Los cilindros y conos inclinados no son cuerpos de revolución. Pulsa para analizar su simetría

Elige una de las opciones y cambia con las barras deslizadoras la inclinación. Observa si hay o no planos de simetría y en que situaciones pueden aparecer.

EJERCICIO 2: Contesta	
¿Cuántos planos de simetría tienen los cilindros oblicuos y cómo son?	
	_
¿Cuántos planos de simetría tienen los conos oblicuos y cómo son?	
	_

3°ESO	Nate	máticas

I.E.S.			
	FECHA:	/ /	

NOMBRE:

4. La esfera terrestre

4.a. Coordenadas geográficas

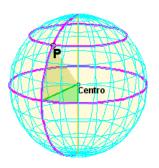
Lee en la pantalla la explicación teórica de e	ssie apartauo.					
EJERCICIO 1 : Completa las frases siguient La Tierra tiene una forma		una línea llamada				
Los puntos en los que el eje corta a la superficie de la Tierra son los						
Los planos que contienen al eje cortan a la llamadas	a Tierra en					
El plano perpendicular al eje que pasa por cuyo borde es Los plane en círculos que ya Sus bord	os paralelos al	plano del Ecuador				
EJERCICIO 2 : Sitúa el puntero del ratón e Ecuador y contesta a las siguientes pregunt ¿Por qué se denominan meridianos ?	•	eridiano y después	en la palabra			
¿Por qué se denomina Ecuador ?						
En la escena elige en el menú: Latitud EJERCICIO 3: Lee el texto de la escena y	contesta:					
¿Qué es la latitud ?						
¿Cuántos paralelos pasan por cada punto de ¿En qué se mide la latitud? ¿Qué hay que indicar al dar la medida de la ¿Cuál es la latitud mínima y en dónde se ale ¿Cuál es la latitud máxima y en dónde se ale ¿Cuál es la latitud de Valladolid?	latitud? canza?	RESPUESTAS				
En la escena elige en el menú: Longitud EJERCICIO 4: Lee el texto de la escena y	contesta:					
¿Qué es la longitud ?						
¿Cuántos meridianos pasan por cada punto ¿En qué se mide la longitud? ¿Qué hay que indicar al dar la medida de la ¿Cuál es la latitud mínima y en dónde se alo ¿Entre qué valores varía la longitud?	longitud?	RESPUESTAS				

¿Cuál es la longitud de Valladolid?

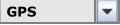
CUADERNO Nº 8

NOMBRE:

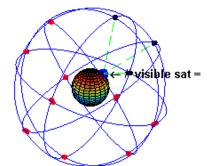
En la escena elige en el menú: Coordenadas geográficas


EJERCICIO 4:

Puedes variar la latitud y la longitud del punto y observar como varía su posición. Contesta:


¿Cómo se llama el punto del planeta situado más al Norte?

¿Y el situado más al Sur?


¿Cuáles son las coordenadas geográficas del punto P de la figura?

En la escena elige en el menú:

EJERCICIO 5: Lee el texto de la escena y contesta:

¿Cuáles son las coordenadas geográficas de un punto?

¿Para que se utilizan las coordenadas geográficas?

¿Cómo se llama el sistema que sirve para localizar con precisión a una persona, objeto, etc.?

Si haces clic sobre la imagen, en la que puedes ver la cantidad de satélites artificiales visibles desde un punto concreto del planeta a medida que va girando, accederás a un artículo de la **wikipedia** en la que se explica detalladamente el funcionamiento y características del **GPS**.

Pulsa...

→ Vamos a practicar un poco

EJERCICIOS

- 9. Aunque ahora se usa una definición más precisa, el metro es, aproximadamente, la diezmillonésima parte del cuadrante de un meridiano cualquiera. Esto significa que todos los círculos máximos sobre la Tierra miden, aproximadamente, 40.000.000 de metros (en particular, todos los meridianos y el Ecuador). A partir de este dato calcula la longitud del radio de la Tierra, su superficie y su volumen.
- 10. Salvo el Ecuador, los paralelos no son círculos máximos y calcular su longitud requiere el uso de unas herramientas que no verás hasta el curso que viene. Sin embargo, en algunos casos concretos y con ayuda de nuestro viejo amigo, el Teorema de Pitágoras, podemos hacerlo. Calcula la longitud en km de los paralelos de latitud 30°N, 45°N y 60°N.
- ¿Cuál es la ruta más corta?
 Queremos calcular la distancia entre un punto situado a 10º longitud O y 30º latitud
 N y otro situado a 80º longitud O y a 30º de latitud N moviéndonos solamente por el
 paralelo común. ¿Y si nos movemos de un punto al otro a lo largo de un círculo
 máximo?

Pulsa

para ir a la página siguiente.

CUADERNO Nº 8

NOMBRE:

4.b. Husos horarios

Lee en la pantalla la explicación teórica de este apartado y lee el texto que aparece en la escena de la derecha.

EJERCICIO 1: Contesta.

¿Qué es un día?

¿Cuál es la amplitud de un huso esférico?

¿Cuántos husos esféricos hay en total?

¿Cuánto tarda el Sol en cruzar cada huso?

¿Qué es un huso horario?

Pulsa...

→ Vamos a practicar un poco y a analizar los husos horarios en la realidad

EJERCICIOS

- 11. Tenemos una esfera de 9 cm de radio. Calcula la superficie de un huso esférico sobre esa esfera de 59º de amplitud
- 12. La ciudad A tiene una longitud de 123°O y la ciudad B de 23°E. Calcula la hora que es en la ciudad B cuando en la ciudad A son las 10 horas.
- Lee la explicación en el recuadro sobre: LOS HUSOS HORARIOS EN LA REALIDAD Si quieres ampliar la información al respecto de estos temas puedes pulsar en los enlaces siguientes:

Mapa de husos horarios en el mundo Calcular la hora en cualquier parte del mundo Reloj mundial

Pulsa 🚺 para ir a la página siguiente.

5. Mapas

5.a. Proyecciones de la esfera sobre un plano

Lee en la pantalla la explicación teórica de este apartado.

EJERCICIO 1: Completa.

Un mapa es _			

I.E.S.					

CUADERNO Nº 8

NOMBRE:

Elige una a una en la escena de la derecha los distintos tipos de proyecciones y completa las frases en los siguientes recuadros:
En la escena elige el tipo de proyección: Proyección de Mercator
Proyección
Características:
Los meridianos se representan mediante
Los paralelos se representan mediante
Ventajas: Mantiene
Inconvenientes:
Disminuye a medida que, lo que
hace que la superficie de los países de parezca mucho
mayor de lo que es en realidad.
En la escena elige el tipo de proyección: Proyección de Gall-Peters
Proyección
Características:
Los meridianos se representan mediante
Los paralelos se representan mediante
Ventajas:
Conserva
Inconvenientes: No se mantiene
Las zonas cercanas al Ecuador se ven y las cercanas a
los polos se ven
En la escena elige el tipo de proyección: Proyección cónica
Proyección
Características:
Los meridianos se representan mediante Los paralelos se representan mediante
Ventajas: Es muy adecuado para representar
Es muy preciso cerca del
Inconvenientes:
Las distorsiones aumentan al .
En la escena elige el tipo de proyección: Proyección azimutal
Proyección
Características:
El mapa es
Los meridianos se representan mediante
Los paralelos se representan mediante
Ventajas:
Es muy adecuado para representar Es muy preciso cerca del
Inconvenientes:
Las distorsiones aumentan al

Pulsa 🚺

para ir a la página siguiente.

I.E.S.				

/ /

CUADERNO Nº 8

NOMBRE:

Recuerda lo más importante - RESUMEN

			із ппро	realite RESOLIEI
Regulares: S	Sus caras s y en c	ada vértice		Semirregulares: Las caras son y con
<u>Prismas</u> : Las	s bases son y lo	s lados son		Pirámides: La base es
Todos los pol				
CUERPOS E				
Cilindro: Ger		ar sobre		Cono: Generado por unal girar
Esfera: Gene		al girar 		El cilindro y el cono desarrollables. La esfera desarrollable.
ÁREAS Y V	OLÚMENE	S		p =,
Prismas	A. lat.	A. total	Volumen	B =, h =, a =(pirámide), r =(conos y cilindros), R =(esfera), g =(cono).
Pirámides Cilindros				Poliedros: El área de un poliedro es siempre igual a
Conos Esferas				El volumen se calcula
Meridianos: partir del			. El mer	Se numeran de a ridiano de un lugar es su
Paralelos:				Se numeran de a es su
Husos horar de diferencia			en husos	s geográficos de de amplitud con
MAPAS				

Proy. Pulsa

para ir a la página siguiente

Proy._

Proy.

Proy._

I.E.S.		
	FECHA:	/ /

Para practicar

En esta unidad encontrarás ejercicios de:

- Áreas
- Volúmenes.

NOMBRE:

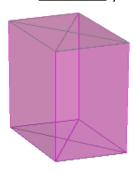
Coordenadas geográficas

Completa los enunciados y resuélvelos. Después comprueba si lo has hecho bien.

Ejercicios de áreas

Poli	edros semirregulares (Haz un mínimo	de cuatro ejercicios con figuras diferentes)
1.	Calcular el área total de un	
	sabiendo que su arista mide	
2.	Calcular el área total de un	
	sabiendo que su arista mide	
3.	Calcular el área total de un	
	sabiendo que su arista mide	
4.	Calcular el área total de un	
	sabiendo que su arista mide	

3°ESO Matemáticas I.E.S.

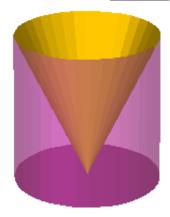

FECHA: / /

CUADERNO Nº 8

NOMBRE:


Prismas

5. Calcula el área total de un prisma recto sabiendo que sus bases son rombos de diagonales D=_____ y d=_____ y su altura h=____.


Pirámides

6. Calcula el área lateral de un tronco de pirámide cuadrangular regular sabiendo que el lado de la base mayor es B=____. El lado de la base menor es b=_____ y la arista lateral es a=____

Cilindros y conos

7. Calcula el área total del recipiente de la figura izquierda sabiendo que el radio de la base es r=____ y la altura es h=____.

escartes

3°_{ESO} Matemáticas

I.E.S. _____

FECHA:

/ /

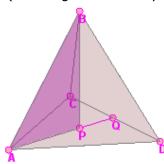
CUADERNO Nº 8

NOMBRE:

El observatorio astronómico

8. ¿Cuántos litros de pintura se necesitan para pintar la pared exterior de un observatorio astronómico sabiendo que tiene un radio de _____, que la altura del cilindro es de _____ y que con cada litro se pueden pintar

La bola de navidad


9. Una bola de navidad de 3cm de radio se quiere cubrir parcialmente con pan de oro de forma que la franja cubierta tenga una amplitud de 60° desde el centro de la bola. Calcula la superficie de la bola que se pintará.

Ejercicios de volúmenes Tetraedro regular

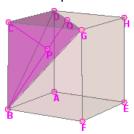
10. Calcula el volumen del tetraedro regular de la figura sabiendo que su arista AB=10cm.

(El triángulo APB te ayudará)

3°ESO Matemáticas

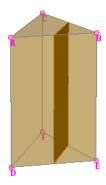
NOMBRE:

I.E.S. _____

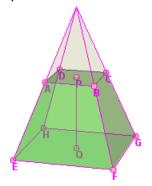

FECHA:

/ /

Cubo y tetraedro


CUADERNO Nº 8

11. El cubo de la figura tiene 10 cm de arista. Calcula el volumen del tetraedro de vértices BCDG y comprueba que es la sexta parte del volumen del cubo.


Prisma truncado

12. Calcula el volumen de los dos prismas en que queda dividido el prisma regular triangular de la figura al ser cortado por un plano perpendicular a las bases que pasa por los puntos medios de las aristas. AD=20m y AC=15m.

Pirámide truncada

13. Calcula el volumen de un tronco de pirámide cuadrangular sabiendo que la arista de la base mayor es EF=20cm, la arista de la base menor es AB=8cm y la altura del tronco es PQ=15cm.

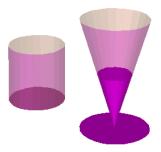
3°eso Matemáticas

NOMBRE:

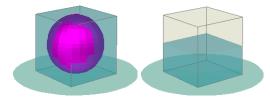
I.E.S. _____

FECHA:

/ /


Cilindros

14. Calcula el volumen de la pieza de arriba sabiendo que el diámetro de la circunferencia exterior es de 10cm, el diámetro de la circunferencia interior es de 5 cm y la altura es de 10 cm.

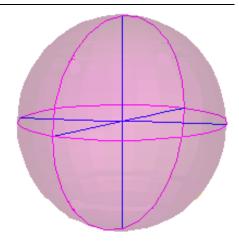

Cilindro y como truncado

15. Las figuras representan un vaso cilíndrico de 6cm de diámetro y 8 cm de altura y una copa con forma de tronco de cono con 7cm de diámetro mayor, 5 cm de diámetro menor y 8 cm de generatriz. ¿Cuál tiene más capacidad?

Cubo y esfera

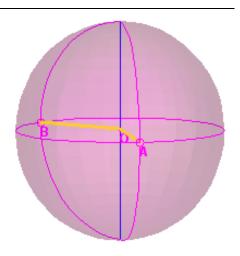
16. Un recipiente cúbico de 10 cm de arista está lleno de agua. Se introduce en él con cuidado una bola de cristal de 5 cm de radio y luego se saca con cuidado. Calcula el volumen del agua que se ha derramado y la altura a la que queda el agua cuando se saca la bola.

I.E.S.				


/ /

CUADERNO Nº 8

NOMBRE:


Ejercicios de coordenadas geográficas Distancias sobre meridianos

17. Calcula la distancia entre dos puntos de la Tierra, A y B, situados en el mismo meridiano, si la latitud de A es de ______ y la de B es de ______.

Husos horarios

18. El punto A se encuentra en el meridiano _____ y el punto B en el meridiano _____. Si en A son las ____ horas, ¿qué hora es en B?

El camino más corto

19. Los puntos A y B se encuentran sobre el paralelo 45°N y sus longitudes se diferencian en 180°. Un avión tiene que ir desde A hasta B ¿qué ruta es más corta: siguiendo el paralelo o siguiendo el meridiano por el Polo Norte?.

Pulsa opara ir a la página siguiente.

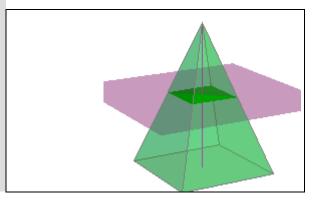
I.E.S.						

_					
Au	toe	eva	lua	CIO	n

Completa aquí cada uno de los enunciados que van apareciendo en el ordenador y resuélvelo, después introduce el resultado para comprobar si la solución es correcta.

Indica qué poliedro se obtiene al truncar las aristas de un ______ por la mitad e indica el número de caras aristas y vértices que tiene.

Se obtiene un: ______ Caras= ___ Aristas= ___ Vértices = ___


Los catetos de un triángulo rectángulo miden ______ y _____. Averigua qué cono tiene mayor área total: el que se obtiene haciendo girar el triángulo alrededor del primer cateto o el que se obtiene al girar sobre el segundo.

Calcula el área total del poliedro semirregular de la imagen sabiendo que su arista es a. (Expresa el resultado en función de a)

Calcula el área del triángulo de la figura sabiendo que la arista del cubo es a. (Expresa el resultado en función de a)

La "zona tropical" de la Tierra está situada, aproximadamente, entre los paralelos 30° N y 30° S. ¿Qué porcentaje de la superficie de la Tierra está situada en la zona tropical?

Una pirámide de base cuadrada se corta con un plano paralelo a la base por la mitad de la altura de la pirámide, obteniendo una pirámide más pequeña y un tronco de pirámide ¿Cuántas veces es más grande el volumen del tronco con respecto al volumen de la pirámide pequeña?

3°eso Matemáticas I.E.S.

FECHA: / /

CUA	DFR	NO	No	8
CUM	PLF			O

NOMBRE:

	pland una a de la	orta una semiesfera de la paralelo a la base de la altura de 2/3 del radio. H mayor de las dos zonas ida. (Expresa el resultado	a semiesf alla el vo s en que						
	Una	milla náutica es la dista	ncia enti	re dos					
0	punto	os situados sobre el Ec	uador co	n una					
		encia de longitudes de 1' vale una milla náutica si							
	Tierra	a es de 6366 km?							
	Bosto	on está en el meridia	no 71º	0)	,				
		kfurt en el meridiano 9 de Frankfurt a las 23 h							
	horas	s en llegar a Boston. ¿Q	•						
	Bosto	on cuando llega?							
•	Asoci	a los distintos tipos de m	apa con	sus ca	aracterísticas.				
	a)	Mapa de Mercator		1)	Los paralelos son círculos y los meridianos radios				
	b)	Mapa de Gail Peters		2)	Los paralelos y los meridianos son rectas perpendiculares y los paralelos están más separados cuanto más lejos del Ecuador				
	c)	Mapa Azimutal		3)	Los paralelos son arcos de circunferencia y los meridianos son rectas convergentes				
	d)	Mapa cónico		4)	Los paralelos y los meridianos son rectas perpendiculares y los paralelos están más juntos cuanto más lejos del Ecuador				
		Solución:	a)	b)	c) d)				